RESEARCH DESIGNS RELATED THE ROLE OF STEM FACULTK UN STUDENT SUCCEs

Kimberly Childs
 Keith Hubbard

January 25, 2011

Texas Middle and Secondary Mathematics Project Stephen F. Austin State University

3 RESEARCH DESIGNS

1. Training Under-Qualified Middle \& Secondary Mathematics Teachers (TxMSMP), '02-'08
2. Training Teacher-Leaders in Mathematics to Mentor \& Deliver PD (Texas LIMIT, TxMSMP Leadership), '09-'14
3. Horizontally Integrating Curriculum in an Alternate Cultural Setting, '10-

STUDENT SUCCESS
 (\& QUANTIFYING PROGRESS TOWARD SUCCESS

Definition Successful students will:

- graduate high school (including passing the TAKS/end-of-course exams - Texas' high stakes tests)
- matriculating at high percentages into higher education, college ready
- believe the mathematics classroom to be a supportive environment
- perceive mathematics to be a discipline integrally tied to their everyday lives.

STUDENT SUCCESS
 (\& QUANTIFYING PROGRESS TOWARD SUCCESS

Progress toward success:

- Improvement at each grade level TAKS math test
- Sustained improvement on standardized math tests
- Teacher pre/post test improvement on specific content area (Sanders \& Rivers, 1996; Kennedy, et. al., 2008)
- Pre/Post test improvement on conceptual understanding, procedural fluency, strategic competence, adaptive reasoning, productive disposition (NRC)
- Reflect improved perception of mathematics classroom (instruction, learning, supportiveness)
- Reflect more knowledge of careers in mathematics

The challenge is then not only demonstrating progress but linking progress to success.

TRAINING UNDER-QUALIFIED MATHEMATICS VEACHERS

PROGRAM DESIGN

- Implemented the cohort model - 3 middle, 2 secondary cohorts
- Developed 2 new majors within the Master of Science degree program (with Texas Higher Education Coordinating Board approval)
- Provided a schedule conducive to teachers' schedules (weekend, Saturday only, intensive summer sessions)
- Developed courses of study in which teachers were immersed in intensive studies and provided necessary accommodations
- Required school district commitment
- Held administrator professional development sessions twice a year on campus and intermittently via phone conversations, email, posting of online materials, district campus visits, etc.
- Engaged IHE faculty in development and delivery of courses

TRAINING UNDER-QUALIFIED MATHEMATICS VEACNERS

INTIAL RESEARCH

Pre/Post Tests for Teacher:

- Evaluator recommended using the same test, since 2.5 years separated deliveries
- Aggregate scores and specific questions yielded insights

Use the definition of division, $\frac{a}{b}=c$ if and only if \qquad ,
to explain why $\frac{0}{0} \neq 1$.

Sketch the graph of the curve determined by the equation $y=x^{2}$.
a. Using 8 rectangles of equal width and the right endpoints of the subintervals, find the Riemann sum for the function over the interval $[0,4]$.
b. Evaluate $\int_{0}^{4} x^{2} d x$ and calculate the percentage of error between this value and the area approximation found in part a.

TRAINING UNDER-QUALIFIED MATHEMATIICS JEACתERS

INITIAL RESEARCH DESIIGN

Middle School Cohort 1: (100 point scale)

	Pre-Test	Post-Test
Mean	28	52
Std. Dev.	11	13

Middle School Cohort 2: (100 point scale)

	Pre-Test	Post-Test
Mean	31	63
Std. Dev.	10	10

Secondary Cohort 1: (100 point scale)

	Pre-Test	Post-Test
Mean	25	46
Std. Dev.	13	17

TRAINING UNDER-QUALIFIED MATHEMATICS INITIAL RESEARCH DESIGN

Longitudinal TAKS Test scores following students who experienced a one-year instructional intervention.

Difference between students with NSF teachers

 vs. Comparable teachers in 2004/05| | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Students Set 1 | 22 | 59 | 67 | | | | |
| Students Set 2 | 95 | -3 | 66 | 72 | | | |
| Students Set 3 | 5 | 6 | -8 | 14 | 24 | | |
| Students Set 4 | 3 | -35 | -53 | -15 | -27 | -88 | grade 11 |
| Students Set 5 | 100 | -3 | -33 | -27 | -74 | -55 | grade 10 |
| | | | | | | | grade 9 |
| | | | | | | | grade 8 |
| | | | | | | | grade 7 |
| | | | | | | | grade 6 |
| | | | | | | | grade 5 |

TRAINING UNDER-QUALIFIED MATHEMATICS TEACHERS INITIAL RESEARCH CONCLUSIONS

Difference between students with NSF teachers vs. Comparable teachers in 2004/05

	2004	2005	2006	2007	2008	2009	
Students Set 1	22	59	67				
Students Set 2	95	-3	66	72			
Students Set 3	5	6	-8	14	24		
Students Set 4	3	-35	-53	-15	-27	-88	grade 11
Students Set 5	100	-3	-33	-27	-74	-55	grade 10
							grade 9
							grade 8
							grade 7
							grade 6
							grade 5

- Teacher content knowledge uniformly increased
- Student scores improved the year it was delivered
- Intervention in the $9^{\text {th }}$ grade was most effective, followed by $8^{\text {th }} \& 7^{\text {th }}$
- Algebra I makes up $\sim 70 \%$ of the TAKS test
- The inability to disaggregate data was a hindrance (though it was intended to preserve confidentiality)

TRAINING UNDER-QUALIFIED MATHEMATIICS JEACתERS

ADDITIONAL RESEARCH DES.GIN

Longitudinal TAKS scores Following Teachers:

- Focus on a single district
- Observe whether program permanently empowered teachers
- "Attribution Error" (Mary Kennedy, 2010) - challenges permanency

Exit scores for $11^{\text {hh }}$ graders

- Compare student affected/unaffected by MSP teachers

Gather teacher retention data

- Compare MSP teacher and non-MSP teacher retention
- "Retention" (Ed Fuller)

TRAINING TEACHER-LEADERS IN MATIIEMAATICS

PROGRAM DESIGN

- Build mathematics leadership capacity by training well qualified teachers to design and deliver PD in their own district
- 2 cohorts - vertically integrated
- Monthly: 1 full day session during the academic year
- Summer: 3 two-day summer sessions
- Long-term commitment (4 years for MSP Leadership, 5 for Noyce LIMIT)
- Reading and implementing teacher development literature
- Implementing Lesson Study (K. Merseth)
- Actively engaging peers at their campuses
- Direct intervention in leadership development through collaborative efforts with the UT Austin Charles A. Dana Center

TRAINING TEACHER-LEADERS IN MATITIEMAATICS

RESEARCH DESIGN

- Initial Qualitative Question:

How do mathematics educators providing professional development to middle and secondary mathematics teachers interpret and respond to the pedagogical needs of those teachers?

- Each participant gave 5 colleagues within their district* a survey of factoring
- Each participant identified themes in teacher responses and appropriate responses in PD tailored to the needs of their colleagues

TRAINING TEACHER-LEADERS IN MANTHEMAATICS

RESEARCH DESIGN

- Linked non-participating teacher responses, with teacher-leader analyses in qualitative analysis software (NVivo)
- Identified themes and traced those themes between artifacts
- Precipitated the creation of an article for teachers on factoring

TRAINING TEACHER-LEADERS IN MATITIEMAATICS

RESEARCH DESIGN

- Link existing qualitative data with student responses on factoring
- Pair past teacher surveys after required PD with future surveys of PD
- After teacher-leaders identify areas for PD in their district, work with them to create pre/post assessment to inform effectiveness

CURRICULUM IN AN ALTERNATE CULTURAL SEICIING

PROGRAM DESIGN

- Based in Niger, Africa
- PI developed 6 lessons on conic sections that emphasized the connections between algebra and geometry, along with related assignments
- PI presented lessons to an Algebra II class and a Precalculus class
- Pl and instructor of record conducted exit interviews with students

CURRICULUM IN AN ALTERNATE CULTURAL SEITIING

RESEARCH DESIGIN

- Pre/Post Tests (NRC)
- conceptual understanding
- procedural fluency
- strategic competence
- Exit interviews - preliminary findings
- Algebra II -
- Viewed geometry as a necessary prerequisite to understanding the algebra
- Noted that study habits included memorization and practice
- Precalculus -
- Viewed geometry and algebra working together to explain the development and behavior of conic sections
- Noted that class interaction coupled with group study best developed skills

CURRICULUM IN AN ALTERNATE CULTURAL SEITIING

- Algebra 2: 8-point scale

	Pre-Test	Post-Test
Mean	3.06	5.88
Std. Dev.	1.25	1.19

- Precalculus: On a 10-point scale

	Pre-Test	Post-Test
Mean	3.06	5.88
Std. Dev.	1.25	1.19

Training Under-Qualified Middle \& Secondary Mathematics Teachers

- How can data sets of teacher content knowledge most meaningfully be correlated with actual student success?
- When following student past a 'treatment class,' how does one control for other teachers? (Not I.I.D.)
- When states change their high states testing formats how should continuity be measured?

QUESTIONS?

Training Teacher-Leaders in Mathematics to Mentor \& Deliver PD

- How is qualitative data, such as interviews and surveys, most effectively preserved from overlapping projects to inform future research endeavors?
- How can issues of teacher success, like teacher longevity, quantifiably be linked with improved learning environment?

QUESTIONS? Horizontally Integrating Curriculum in an Alternate Cultural Setting

- After identifying cultural, ethnic, or socio-economic stratification in best pedagogical practices, what approaches are optimum to educate teachers about these differences and maximize teacher (and district) buy-in for addressing them?

INSIGHTS?

Dr. Kimberly Childs kchilds@sfasu.edu

Dr. Keith Hubbard hubbardke@sfasu.edu

