Area Under the Curve

Meera Chandrasekhar

(meerac@missouri.edu)
Dorina Kosztin
(kosztind@missouri.edu)
Department of Physics and Astronomy
University of Missouri, Columbia
Support: National Science Foundation
Math-Science Partnership Institute Grant NSF DUE 0928924
www.physicsfirstmo.org

A TIME for Physics First

Outline

\square Students obtain straight lines graphs from different experiments
\square Students figure out quickly that the slope of a linear graph has a physical meaning
\square Additional physical meaning in certain graphs: area under the curve
\square Today we will analyze three experiments
\square Uniform Motion v-t graph
\square Accelerated Motion v-t graph
\square Work F - d graph

Uniform and Accelerated Motion: Students' Beliefs

\square Same position means same speed
\square Position and velocity graphs show the path of the particle
\square Difficulty relating real world motion to a graph
\square Leading particle moves at a faster speed
\square Velocity must always be positive
\square The meaning of the phrase "graph a-versus-b".
\square Identify quantity in a graph that will answer the question (coordinate, slope, area)
\square Same velocity means same acceleration for two objects
\square Zero velocity means zero acceleration

Uniform and Accelerated Motion: Big Ideas

\square Position, distance and displacement have different meanings.
\square Uniform motion means that an object travels equal distance in equal time intervals.
\square Uniform accelerated motion means that velocity changes by equal amounts in equal time intervals
\square An object that accelerates is speeding up, slowing down, or turning.
\square Motion can be described in different ways: with words, graphs, motion diagrams and mathematical models.

Uniform Motion: Constant Speed Car Lab

www.physicsfirstmo.org
\uparrow^{x}

Uniform Motion: X vs t graph from experiment

- position changes linearly with time
- the rate of change of position with time = velocity
- slope of graph = velocity
- slope is constant => velocity is constant
- length of distance travelled in unit time is the same

Uniform Motion: v vs t graph from experiment

- same distance travelled in the same time interval
- velocity is constant
- calculate the distance traveled as the area under the v vs t graph

Uniform Motion: Distance traveled

- What is the distance traveled in the first second?
-What is the distance traveled in the first 2 seconds?
-What is the distance traveled between $3 s$ and $6 s$?

Uniform Motion: Displacement vs distance

。
www.physicsfirstmo.org

Accelerated Motion

\square How is the v vs t different for the accelerated motion?
\square Demo: the spark timer

www.physicsfirstmo.org

Accelerated Motion: x vs t graph from experiment

- graph is not linear => velocity is not constant
- slope is not constant => can only calculate slope at a point = instantaneous velocity
- length of distance traveled in unit time increases

Accelerated Motion: v vs t graph from experiment

- velocity is not constant, changes linearly with time
- slope of velocity graph represents the rate at which velocity changes = acceleration
- calculate acceleration as the slope of the v vs t graph.
- calculate the distance traveled as the area under the v vs t graph

Accelerated Motion: Distance travelled

Accelerated Motion: Displacement

Work

Students' Beliefs

\square From the non-scientific point of view, "work" is synonymous with "labor".

Big Ideas

\square Work is defined as force x distance moved along direction of force
\square Work can be calculated as the area under the F vs distance graph

Doing Work Lab

- A car is pulled up a ramp so it reaches the top.
- Pull object up the length of the ramp at a constant velocity.
- A constant force will be applied over the entire distance.

www.physicsfirstmo.org

Work: Force and displacement

In order to develop the relationship between force, work and distance, we need to measure force required to travel up each ramp and compare them

www.physicsfirstmo.org

Work: Data and Analysis

Table: Force F required for different lengths of ramp, Δx (height of ramp $=16.5 \mathrm{~cm}$)

$\boldsymbol{\Delta x}(\mathbf{m})$	$\mathbf{F}(\mathbf{N})$
1	0.24
0.9	0.26
0.8	0.28
0.7	0.32
0.6	0.4
0.5	0.46

Force vs. distance traveled on ramp

www.physicsfirstmo.org

What is Work? -Data and Analysis

www.physicstirstmo.org

Summary

\square Today we analyzed three experiments
\square Uniform Motion v-t graph
\square Accelerated Motion v-t graph
\square Work F-d graph
\square This method can be used whenever the product of the variables on the two axes has physical meaning

