Longitudinal Trends in Math and Science Partnership-Related Changes in Student Achievement with Management Information System Data Across Five Years (2003/04-2007/08)

Dimiter M. Dimitrov, Ph.D.

George Mason University

September 2010

PREFACE

This study is one in a series of briefs for the Math and Science Partnership Program Evaluation (MSP-PE) conducted for the National Science Foundation's Math and Science Partnership Program (NSF-MSP). The MSP-PE is conducted under Contract No. EHR-0456995. Since 2007, Bernice Anderson, Ed.D., Senior Advisor for Evaluation, Directorate for Education and Human Resources, has served as the NSF Program Officer.

The MSP-PE is led by COSMOS Corporation. Robert K. Yin (COSMOS) serves as Principal Investigator (PI). Darnella Davis (COSMOS) serves as one of three Co-Principal Investigators. Additional Co-Principal Investigators are Kenneth Wong (Brown University) and Patricia Moyer-Packenham (Utah State University). Any opinions, findings, conclusions, and recommendations expressed in this article are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Longitudinal Trends in Math and Science Partnership-Related Changes in Student Achievement With Management Information System Data Across Five Years (2003/04-2007/08)

Dimiter M. Dimitrov
George Mason University
September, 2010

Abstract

This substudy in the evaluation design of the Math and Science Partnership (MSP) Program Evaluation examines student proficiency in mathematics and science for the MSPs’ schools in terms of changes across five years (2003/04, 2004/05, 2005/06, 2006/07, and 2007/08) and relationships with MSP-related variables using Management Information System data with the Annual K-12 District Survey. First, changes in percentages of students at or above proficient on state assessments in math and science were investigated by gender, ethnicity, special education, and students with limited English using the MIS data available for (a) across the five-year period (2003/04 - 2007/08) and (b) same schools across the last four years (2004/05-2007/08), with the purpose to obtain a sample of schools without missing data for dependable longitudinal analyses. The classification of MSP schools with and without focus on math or science for the longitudinal data over this four-year time period (2004/05-2007/08) was also taken into account. The results indicated that the MSP-related schools demonstrate sustained increase in percent of students at or above proficient in both math and science at all school levels. This trend was more clearly pronounced for schools with focus on math or science. Second, schools were examined by frequency and effect size of increase, decrease, or no change in student math and science proficiency. The schools with positive changes were in much higher numbers and higher mean effect size of change compared to schools with negative changes in student math and science proficiency. This trend was better pronounced for schools with focus on math at the elementary and middle school levels and for schools with focus on science also at the elementary and middle school levels. Third, longitudinal growth trajectories in mathematics and science proficiency across the four years (2004/05-2007/08) were investigated. The results indicated the existence of different latent classes of growth trajectories of school success on state assessments in mathematics and science—from a single-class linear trajectories to four latent classes of nonlinear trajectories across different school levels in mathematics and two latent classes of linear growth trajectories in science. Overall, the schools with MSP focus on math (or science) increase at higher rate in math (or science) proficiency compared to those without MSP focus on math (or science) across the identified latent classes of growth trajectories. Fourth, the relationship between the schools' targeted teacher participation in MSP-related activities over the four-year time period (2004/05-2007/08) and the student math and science proficiency at the "end" year of this period (2007/08) was also investigated. For both mathematics and science, this relationship was positive, yet relatively small, at the elementary school level, also positive, yet

somewhat better pronounced, at the high school level, and negligible at the middle school level. Fifth, the relationship between the students' success in mathematics and science courses and proficiency on state assessments in mathematics and science was investigated at the high school level over the four-year time period (2004/05-2007/08). For mathematics, this relationship was positive and sizable in two years (2004/05 and 2007/08) for students who have successfully completed regular mathematics courses. For science, this relationship was also positive, yet more stable compared to mathematics, across different areas in science, especially for biology.

Longitudinal Trends in MSP-Related Changes in Student Achievement With MIS Data Across Five Years (2003/04-2007/08)

This study analyzes data from the MSP-Management Information System (MSP-MIS) initiated by NSF as a web-based data collection system. Specifically, the study examines student proficiency in mathematics and science for the MSPs' schools in terms of changes across five years (2003/04, 2004/05, 2005/06, 2006/07, and 2007/08) and relationships with MSP-related variables. The purpose of the MSP-MIS is, in part, to assess the overall implementation of the MSP Program and to monitor the progress of individual MSP grants. Such implementation and monitoring are complex affairs because of the complexity of the MSP grants. The MSP-MIS data are self-reported at the school level. Each grant is a partnership, minimally involving a K-12 district and an institution of higher education (IHE). More often, however, multiple districts and multiple IHEs are engaged in a single MSP grant. The MSP-MIS collects annual data from all grantees, based on multiple instruments. The present study used data from one of the instruments, the Annual K-12 District (school-level) Survey for years 2003/04, 2004/05, 2005/06, 2006/07, and 2007/08. Descriptive analyses from this survey are reported elsewhere (Silverstein et al., 2005). (Another MSP-MIS instrument provided information on an MSP’s math or science focus at the school level.)

The initial year, 2002/2003, is not included in this analysis because the number of schools that provided MIS data for 2002/03 is disproportionately smaller than those in the subsequent four years. For example, the number of schools with MIS data on math performance across all six years, 2002/03-2007/08, versus the number of schools with such data across the last five years, 2003/04-2007/08, is (a) 24 versus 225, for elementary schools, (b) 15 versus 140 , for middle schools, and (c) 5 versus 120, for high schools. Also, the initial trends across the first three years, 2002/03-2004/05, are already reported by MSP-PE (e.g., Dimitrov, 2008).

Addressed are the following five major research questions (RQs):
RQ1: What are the trends in mathematics and science proficiency changes across the targeted five-year time period (2003/04-2007/08) for MSP-related schools based on (a) MIS data for schools that reported student achievement data for any of the five years and (b) longitudinal MIS data —schools with nonmissing student achievement data across the last four years (2004/05-2007/08). Of particular interest is the effect size in longitudinal changes in student proficiency for schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject (math or science).

RQ2: What is the distribution of MSP-related schools across categories of change (increase, decrease, or no change) in math and science proficiency over the targeted four-year period of time (2004/05-2007/08) for schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject?

RQ3: What are the longitudinal growth trajectories (with possible latent classes of such trajectories) in math and science proficiency across the four-year period of time (2004/05 2007/08) for schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject?

RQ4: What is the relationship between schools' targeted teacher participation in MSPrelated activities over the four-year time period (2004/05 - 2007/08) and the schools' success in math and science proficiency at the end year of this time period (2007/08).

RQ5: What is the relationship between the schools' success in math (or science) at any year of the time period 2004/05-2007/08 and the ratio indicating what proportion of the students who took the state examination in math (or science) have successfully completed a regular or advanced course in math (or a particular subject area in science-Biology, Chemistry, Physics, Earth and Science, or Integrated Science) that year?

The reason for not including year 2003/04 in the longitudinal data analyses of the present study is twofold. First, the number of schools that provided MIS data for 2003/04 is disproportionately smaller than those in the subsequent four years (2004/05-2007/08) thus diminishing the dependability of the results from targeted longitudinal analyses that require relatively large samples (e.g., latent class analysis of growth trajectories of proficiency in math or science). For example, as given in Tables 3 and 4, the number of schools with MIS data on math performance across all five years, 2003/04-2007/08, versus the number of schools with such data across the last four years, 2004/05-2007/08, is (a) 225 versus 393 , for elementary schools, (b) 140 versus 233, for middle schools, and (c) 120 versus 190, for high schools. Second, intermediate and longitudinal trends across the time periods 2003/04-2005/06 and 2003/04-2006/07, respectively, are already reported by MSP-PE (e.g., Dimitrov, 2009a, 2009b).

The research questions address different aspects of changes in math or science proficiency over the time period 2003/04-2007/08 and longitudinal analyses based on MIS nonmissing data for the last four years (2004/05-2007/08). Of particular interest is the effect size in longitudinal changes in student proficiency for schools with (or without) MSP focus on math or science across four years (2004/05-2007/08). RQ1 focuses on the statistical significance of changes and their effect size. RQ2 deals with the direction of change (decrease, no change, increase) for
schools. RQ3 investigates the trajectories of change across four years (2004/05-2007/08) and possible latent classes of such trajectories. RQ4 investigates the relationship between school's targeted teacher participation in MSP-related activities over the four-year time period (2004/052007/08) and school's success in math and science proficiency at the end year of this time period (2007/08) - that is, to what degree (if any) a "critical mass" of four-year targeted teacher participation in MSP-related activities can explain the school performance in math and science (percent of students at or above proficient) at the end year (2007/08). Finally, RQ5 investigates the relationship between the proportion of the students assessed on the state examination in math (or science) and the proportion of students who successfully completed a regular or advanced course in math (or a particular subject area in science).

Table 1 summarizes the information about the data used by research questions.

Table 1

Data Sets Used in the Statistical Analysis, by Research Questions

Research Question	Data
RQ1: What is the distribution of percent of students at or above proficient in math or science for MSP-related schools over (a) the five-year time period (2003/04-2007/08) and (b) the four-year time period (2004/05-2007/08) without missing data and the effect size of changes in this distribution by schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject?	MSP-MIS student achievement data from MSP-related schools in three scenarios using (a) schools that have reported such data for any of the years (Appendix A), (b) same schools that have reported such data for all five years (2003/04-2007/08) - Appendix B, and (c) same schools that have reported data across the last four years (2004/05-2007/08) -- Appendix C.
RQ2: What is the distribution of MSP-related schools across categories of change (increase, decrease, or no change) in math and science proficiency across the four-year period of time (2004/05 to 2007/08) by schools with or without MSP focus on the subject (math or science)?	Longitudinal data from scenario (c) in RQ1—only schools with MSP-MIS data on student proficiency in math (or science) for the last four years (2004/052007/08) -- Appendix C.
RQ3: What are the longitudinal growth trajectories (and possible latent classes of such trajectories) in math and science proficiency across the targeted four-year period (2004/05 - 2007/08) for schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject?	Data used in RQ2 and scenario (c) of RQ1 - only schools for which MSP-MIS student achievement data were available across the last four years (Appendix C). The school scores were adjusted to obtain stability in variation across school years.
RQ4: What is the relationship between schools' targeted teacher participation in MSP-related activities over the four-year time period (2004/05-2007/08) and the schools' success in math and science proficiency at the end year of this time period (2007/08)?	Schools with MSP-MIS data available on (a) targeted teacher participation at any of the four years (2004/05-2007/08) and (b) student achievement data for the last year of this time period (2007/08).

RQ5: What is the relationship between the schools' success in math (or science) proficiency at any year of the time period 2004/05-2007/08 and the ratio indicating what proportion of the students who took the state examination in math (or science) have successfully completed a regular or advanced course in math (or particular subject area in science) that year?

High schools for which MSP-MIS data are available at any of the four years (2004/05-2007/08) on (a) student proficiency on state examinations in math (or science) and (b) the proportion of students being assessed on the state examination in math (or science) who have successfully completed a regular or advanced course in math (or a particular subject area in science - Biology, Chemistry, Physics, Earth and Science, or Integrated Science).

The first research question (RQ1) was addressed using MSP-MIS student achievement data from MSP-related schools in three scenarios. Namely (a) using schools that have reported such data for any of the five years 2003/04, 2004/05, 2005/06, 2006/07, and 2007/08 (see Appendix A), (b) using only schools that have reported data for each of these five years (see Appendix B), and (c) using only schools that have reported data for each of the last four years (see Appendix C), taking into account the school's focus on math or science. The first two scenarios data (Appendices A and B) are used only for descriptive purposes, whereas the third scenario data (Appendix C) are used for inferential longitudinal analysis of changes in school math and science proficiency, including effect sizes for changes of particular interest in this study - specifically, changes in the span of two time periods, namely (a) "sustained" changes from the year 2004/05 to the end year (2007/08) and (b) a "step-down" period (2004/05-2006/07) to capture changes prior to the end year of the targeted four-year time period (2004/05-2007/08).

The second research question (RQ2) was addressed using the longitudinal data from scenario (c) in RQ1—only schools with MSP-MIS data on student proficiency in math (or science) for the targeted four-year period of time (2004/05-2007/08)—see Appendix C. This question was answered by examining the frequency distribution of MSP-related schools across categories of change (increase, decrease, or no change) in math and science for schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject over the four-year period of time (2004/05-2007/08).

The third research question (RQ3) was also addressed with the data used in RQ2 and scenario (c) of RQ1—only schools for which MSP-MIS student achievement data were available across the targeted four-year period of time (2004/05-2007/08)—see Appendix C. The school scores (proportion of students at or above proficient on a state assessment in math or science) in this longitudinal analysis were transformed using the arcsin-root transformation to stabilize the scores in normality and variability across repeated measures (four school years: 2004/05-

2007/08) (e.g., see Sokal \& Rohlf, 1995; Zar, 1999). It is important to emphasize in this regard that the main purpose of RQ3 is to examine trends and factors of growth (initial status and rate of change) in math and science proficiency for two groups of schools - with or without MSP focus on math (or science) - not to compare these two groups of schools on percent of students at of above proficient; (such comparisons are addressed, from different angles, with research questions RQ1 and RQ2).

The fourth research question (RQ4) was addressed using schools for which MSP-MIS data were available on (a) targeted teacher participation at any of the four years (2004/05-2007/08) and (b) student achievement data for the end year (2007/08). As alluded to earlier, the idea was to investigate the relationship between the school's "critical mass" of targeted teacher participation in MSP-related activities over all four years and student math and science proficiency at the end of this time period. The variable "targeted teacher participation in MSPrelated activities" is not involved in the previous three research questions.

Finally, the fifth research (RQ5) was addressed using schools for which MSP-MIS data were available at any of the four years (2004/05-2007/08) on (a) the proportion of students who passed the state examination in math (or science), and (b) the proportion of students who have successfully completed a regular or advanced course in math (or a particular subject area in science - Biology, Chemistry, Physics, Earth and Science, or Integrated Science). Such MIS data are available only at the high school level.

Method

Data

From the Annual K-12 District Survey, the data used in this paper covered schools with available data for the five research questions as described in the previous section. Appendix A provides data on (a) number of schools for which MSP-MIS data on student math or science proficiency were available for any of the five years (2003/04, 2004/05, 2005/06, 2006/07, and 2007/08), (b) number of students in these schools who had taken the state assessment in math or science, and (c) number of students who "pass" (at or above proficient) the assessment. The data are also provided by gender, ethnicity, special education students, and limited English proficiency students. The examination of the data in Appendix A shows, for example, that the highest relative sample representation of schools is for mathematics at the elementary school level. Appendix B is the longitudinal counterparts of Appendix A for math and science, respectively — only schools with MSP-MIS student achievement data across all five years
(2003/04-2007/08). Appendix C describes the longitudinal MSP-MIS student achievement data across the last four years-that is, same schools that have provided such data at each of the four years (2004/05-2007/08). As noted earlier, the data in Appendix C provide larger samples of nonmissing data for dependable longitudinal analyses targeted with the research questions in the present study.

Variables and Scales

There are four main variables investigated in this school-level MSP-MIS study:

- Student achievement - the proportion of students at or above proficient on state assessments in mathematics and science, calculated by the number of students attaining proficiency divided by the total number of students taking the test;
- Targeted teacher participation in MSP-related activities - this variable is identified in MSP-MIS by the condition that 30 percent or more of a school's targeted teachers participated in 30 or more hours of MSP-sponsored activities during a single school year. Given the binary scale (1 if the condition was met, and 0 otherwise), the score for any school on this specific variable over four school years (2004/05, 2005/06, 2006/07, and 2007/08) may vary from zero to four (0 $=$ the condition was not met during any of the three years, and $4=$ the condition was met all four years); and
- MSP focus on math (or science) for each school ($0=$ No, $1=$ Yes), with "yes" meaning that the MSP indicated such a focus in any of the four years being studied.
- The proportion of students assessed on the state proficiency examination in math (or science) at any of the four years (2004/05, 2005/06, 2006/07, and 2007/08) who have successfully completed a regular or advanced course in math (or a particular subject area in science: Biology, Chemistry, Physics, Earth and Science, or Integrated Science) that year.

Statistical Analysis

All research questions were addressed by school level (elementary, middle, and high school). To address RQ1, longitudinal analyses were conducted to compare schools with an MSP focus on math (or science) versus schools without such focus on trends and effect size of changes in percent of students at or above proficient. Cohen's effect size (ES) index for a difference in two proportions, h (Cohen, 1988), was calculated to measure the magnitude of changes in school proficiency in math (or science). The effect for the difference in two proportions, say $\mathrm{P}_{1}-\mathrm{P}_{2}$,
is: $\mathrm{h}=2 \arcsin \sqrt{\mathrm{P}_{1}}-2 \arcsin \sqrt{\mathrm{P}_{2}}$. The magnitude of the effect size is operationally defined as small $(h=.20)$, medium $(h=.50)$, and large $(h=.80)$ effect size (Cohen, 1988, p. 181).

To address RQ2, each school was assigned to one of three categories of change by percent of students at or above proficient in math or science: (a) increase, if the school has a statistically significant positive change, (b) decrease, if the school has a statistically significant negative change, and (c) no change, if the school's change was not statistically significant. The frequency distribution of schools by direction of change (increase, decrease, no change) in math and science proficiency was examined by schools with or without MSP focus on math (or science). The changes were measured by the differences in percent of students at or above proficient on state assessments in mathematics and science (a) from 2004/05 to 2007/08, for sustained changes from the first year (2004/05) to the end year (2007/08) of the targeted four-year period of time, and (b) a "step-down" period of time (from 2004/05 to 2006/07) - to capture changes from the first year (2004/05) to the year preceding the end year (2006/07) of the four-year period of time. This choice was guided by preliminary results that indicated a trend of disrupted linear growth for MSP-MIS student achievement data in year 2006/07.

To address RQ3, longitudinal growth mixture modeling (GMM; e.g., Muthén, 2004) was used to investigate the growth trajectories-initial status (intercept) and rate of change (slope)—, as well as the presence of different latent classes of such trajectories, in math and science across the targeted four-year period of time (2004/05-2007/08). The individual schools were the units of analysis and the adjusted (arcsin-root transformation) proportion of students at or above proficient was the outcome variable measured across all four years (2004/05-2007/08). The school variable "MSP focus on math or science" ($0=$ No, $1=$ Yes) was used as a background variable (see Figure 1). The longitudinal growth analysis was conducted separately for math and science at each (elementary, middle, and high) school level using the computer program Mplus (Muthén \& Muthén, 2007). In addition, chi-square tests for association between categorical variables were used to investigate possible dependence (association) between school membership to latent classes of growth trajectories and school focus (Yes/No) on the subject (math or science) by school level - elementary, middle, and high.

Figure 1. Longitudinal growth model of changes in school math and science proficiency across four years (2004/05-2007/08)

To address RQ4, the Pearson product-moment correlation was used to investigate the relationship between the school's targeted teacher participation in MSP-related activities over the time period of all four years (2004/05-2007/08) and student math and science proficiency at the end of this time period (2007/08). This analysis was conducted separately for math and science at each (elementary, middle, and high) school level.

Finally, to address RQ5, the Pearson product-moment correlation was used to investigate the relationship between the student proficiency on the state examination in math (or science) at any of the four years (2004/05-2007/08) and the proportion of students assessed on that examination who have successfully completed a regular or advanced course in math (or a particular subject area in science: Biology, Chemistry, Physics, Earth and Science, or Integrated Science) that year.

Results

The results are reported in five parts representing the five research questions (RQ1, RQ2, RQ3, RQ4, and RQ5) addressed in this MSP-PE substudy.

Trends and Effect Sizes of Changes in Math and Science Proficiency

This section provides results related to the first research question, RQ1: "What are the trends in mathematics and science proficiency changes based on (a) MIS data for all schools that reported student achievement data for any of the five years 2003/04-2007/08, (b) MIS longitudinal data for schools that reported student achievement data for each of the five years (2003/04-2007/08), and (c) MIS longitudinal data for schools that reported student achievement data for each of the last four years (2004/05-2007/08)?" The four-year longitudinal MIS data involve larger samples for more dependable statistical inferences. Therefore, while the results based on data in the first two scenarios of RQ1 are reported at descriptive level, the four-year longitudinal data in the third scenario are used for inferential statistical analyses with reports of effect size for schools with and without focus on mathematics (or science). The change in percent of students at or above proficient in math (or science), reported in Tables 2 and 6, is tested for statistical significance using a 95\% confidence interval for change.

Mathematics

The percent of students at or above proficient on state assessments in mathematics by school level, for all schools with MSP-MIS student achievement data at any of the five years (2003/04-2007/08), was computed from the data in Appendix A (left panel) and presented in Figure 2. As can be seen, despite the decrease in school rate of math proficiency across the last two years (from 2006/07 to 2007/08), there is a sustained increase in this rate across the entire time period of five years (from 2003/04 to 2007/08). This trend is even more clearly pronounced in Figures 3 and 4, where the results are based on longitudinal data in Appendix B and Appendix C, respectively. The data in Appendix B are for schools that have reported MSP-MIS student achievement data in each of the five years (2003/04-2007/08), whereas the longitudinal data in Appendix C come from larger samples of schools that have reported such data in each of the last four years (2004/05-2007/08). Further refinement of the trend depicted in Figure 4 was achieved by investigating the effect size of changes in math proficiency across the four-year period of time (2004/05-2007/08) for schools with (or without) focus on mathematics. The results are depicted in Figures 5, 6, and 7 and tabulated in Tables 2, 3, 4, and 5 across school levels and student demographics (gender, ethnicity, special education, and limited English proficiency).

Figure 2. Percent of students at or above proficient on state assessments in mathematics by school level (elementary, middle, and high) for all schools with MSP-MIS student achievement data at any of the five years (2003/04-2007/08).

School Year	Elementary Schools	Middle Schools	High Schools
$2003 / 04$	$N=52,926$	$N=71,380$	$N=78,849$
	$P=47.46 \%$	$P=44.27 \%$	$P=47.16 \%$
	317 Schools	178 Schools	176 Schools
$2004 / 05$	$N=91,338$	$N=135,845$	$N=110,004$
	$P=63.16 \%$	$P=51.52 \%$	$P=47.88 \%$
	560 Schools	289 Schools	264 Schools
$2005 / 06$	$N=158,044$	$N=260,274$	$N=140,575$
	$P=66.70 \%$	$P=53.81 \%$	$P=45.72 \%$
	733 Schools	457 Schools	330 Schools
$2006 / 07$	$N=199,853$	$N=276,193$	$N=134,755$
	$P=69.66 \%$	$P=60.07 \%$	$P=51.67 \%$
	801 Schools	481 Schools	343 Schools
$2007 / 08$	$N=201,500$	$N=236,747$	$N=115,496$
	$P=63.59 \%$	$P=58.83 \%$	$P=47.73 \%$
	828 Schools	458 Schools	344 Schools

Note. $N=$ Number of students; $P=$ Percent of students at or above proficient in math.

Figure 3. Percent of students at or above proficient on state assessments in mathematics for the same schools with MSP-MIS longitudinal student achievement data across five years (2003/042007/08)

Figure 4. Percent of students at or above proficient on state assessments in mathematics for the same schools with MSP-MIS longitudinal student achievement data across the last four years (2004/05-2007/08).

Figure 5. Percent of students at or above proficient on state assessments in mathematics for the elementary schools with MSP-MIS student achievement data at each of the four years (2004/052007/08) by school focus on mathematics.

The results for elementary schools in Table 2, graphically represented in Figures 5, show that while there is some decrease in math proficiency after the first year followed by a moderate increase across the next three years for schools without MSP focus on math, there is a sustained increase in math proficiency for schools with MSP focus on math across all four years (2004/052007/08). In effect size (ES) measures, the largest increase in student math proficiency is from the first year (2004/05) to the end year (2007/08) for schools with MSP focus on mathematics: $E S=+0.13$ (a small to medium effect size, according to Cohen, 1988, p. 181). These results, along with those for elementary schools regardless of their focus on math (see Figure 4), indicate that there is an overall increase in math proficiency from 2004/05 to 2007/08 at the elementary school level and this trend is more clearly pronounced for schools with focus on math.

Figure 6. Percent of students at or above proficient on state assessments in mathematics for the middle schools with MSP-MIS student achievement data at each of the four years (2004/052007/08) by school focus on mathematics

The results for middle schools in Table 2, graphically represented in Figures 6, show that for schools without focus on math there is an initial decrease in math proficiency from year 2004/05 to 2005/06 followed by a slight increase over the next three years (2005/06-2007/08) of the four-year period of time (2004/05-2007/08). This trend is somewhat consistent with that for schools without focus on math at the elementary school level. For schools with focus on math, there is an increase in math proficiency over the first three years (2004/05-2006/07) followed by a decrease of 3.5% at the last year (2007/08) of the four-year period of time (2004/05-2007/08), but the overall trend over the entire four-year period of time (2004/05-2007/08) is positive. Specifically, there is an increase over this four-year time period (with a small effect size, $E S=$ 0.03) which is more clearly pronounced during the first three years (2004/05-2006/07) with a small to medium effect size, $E S=0.13$ (Cohen, 1988, p. 181).

Figure 7. Percent of students at or above proficient on state assessments in mathematics for the high schools with MSP-MIS student achievement data at each of the four years (2004/052007/08) by school focus on mathematics.

The results for high schools in Table 2, graphically represented in Figure 7, indicate that for schools without focus on math, there is an overall increase with a small effect size $(E S=0.09)$ in math proficiency over the four-year period of time (2004/05-2007/08), but the performance across the last three years of this time period (2005/06-2007/08) is about the same. For high schools with focus on math, there is an increase with a small effect size ($E S=0.03$) in math proficiency over the first three years (2004/05-2006/07) followed by a decrease of 5.2% at the end year (2007/08). This trend is similar to that for middle schools with focus on math.

Overall, the trend of an increase in math proficiency is more clearly pronounced for schools with focus on math compared to schools without focus on math over the four-year period of time (2004/05-2007/08) for elementary schools, yet only over the first three years of this time period for middle and high schools.

Table 2
Longitudinal School Changes in Mathematics Proficiency

School Year	Percent Proficient Students		Effect Size (ES) of Change	
	MSP FOCUS ON MATH		MSP FOCUS ON MATH	
	YES	NO	YES	NO
Elementary Schools			2004/05-07/08	
2004/05	$\begin{aligned} & \text { 58.00\% } \\ & \text { Students: } 49920 \\ & \text { Schools: } 247 \end{aligned}$	$\begin{gathered} \hline 68.85 \% \\ 20318 \\ 146 \end{gathered}$	Increase $E S=+0.13$	Decrease $E S=-0.12$
2005/06	$$	$\begin{gathered} \hline \mathbf{6 0 . 8 8 \%} \\ 34193 \\ 146 \end{gathered}$	2004/05-06/07	
			Increase$E S=+0.12$	Decrease$E S=-0.14$
2006/07	63.64\% Students: 50648 Schools: 247	$\begin{gathered} \hline \mathbf{6 2 . 4 5 \%} \\ 34496 \\ 146 \end{gathered}$		
2007/08	$\begin{aligned} & \quad \mathbf{6 4 . 1 3 \%} \\ & \text { Students: } 50153 \\ & \text { Schools: } 247 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{6 3 . 0 4 \%} \\ 35020 \\ 146 \\ \hline \end{gathered}$		
Middle Schools			2004/05-07/08	
2004/05	$\begin{aligned} & \quad \text { 46.10\% } \\ & \text { Students: } 71365 \\ & \text { Schools: } 133 \end{aligned}$	$\begin{gathered} \hline \mathbf{6 0 . 4 1 \%} \\ 46514 \\ 100 \end{gathered}$	Increase $E S=+0.03$	Decrease $E S=-0.01$
	48.52\%	58.07\%	2004/05-06/07	
2005/06	Students: 73542 Schools: 133	$\begin{gathered} 54993 \\ 100 \\ \hline \end{gathered}$	Increase$E S=+0.10$	Decrease$E S=-0.03$
2006/07	$\begin{aligned} & \quad \mathbf{5 0 . 9 3 \%} \\ & \text { Students: } 753899 \\ & \text { Schools: } 133 \end{aligned}$	$\begin{gathered} \mathbf{5 9 . 0 9 \%} \\ 54303 \\ 100 \end{gathered}$		
2007/08	$\begin{aligned} & \quad \mathbf{4 7 . 3 7 \%} \\ & \text { Students: } 69280 \\ & \text { Schools: } 133 \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{5 9 . 9 2 \%} \\ 53895 \\ 100 \end{gathered}$		
High Schools			2004/05-07/08	
2004/05	$\begin{aligned} & \quad \text { 38.49\% } \\ & \text { Students: } 34003 \\ & \text { Schools: } 95 \end{aligned}$	$\begin{gathered} \mathbf{4 9 . 1 0 \%} \\ 31828 \\ 95 \end{gathered}$	Decrease $E S=-0.07$	Increase $E S=+0.09$
	38.75\%	53.57\%	2004/05-06/07	
2005/06	Students: 35417 Schools: 95	$\begin{gathered} 30526 \\ 95 \end{gathered}$	Increase$E S=+0.04$	Increase$E S=+0.08$
2006/07	$\begin{aligned} & \quad \mathbf{4 0 . 2 4 \%} \\ & \text { Students: } 34559 \\ & \text { Schools } 95 \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{5 2 . 7 8 \%} \\ 31960 \\ 95 \\ \hline \end{gathered}$		
2007/08	\quad 35.03\% Students: 33505 Schools: 95	$\begin{gathered} \mathbf{5 3 . 6 6 \%} \\ 31625 \\ 95 \end{gathered}$		

Table 3
Longitudinal Changes in Mathematics Proficiency by Gender and School Focus on Math

Gender	School Level	MSP Focus on Math	Percent at or above proficient				Effect Size (ES)	
			2004/05	2005/06	2006/07	2007/08	2004/05-06/07	2004/05-07/08
Males	Elem.	Yes	54.53	59.77	62.45	63.49	+0.16	+ 0.18
		No	67.73	55.92	60.29	61.57	-0.15	-0.13
	Middle	Yes	38.60	48.07	50.06	47.00	+0.23	+0.17
		No	58.30	48.78	56.30	57.54	-0.04	-0.02
	High	Yes	32.21	37.96	39.45	34.21	+0.15	+0.04
		No	48.18	53.46	53.71	53.38	+0.11	+0.10
Females	Elem.	Yes	55.64	61.35	64.19	65.18	+0.17	+. 20
		No	69.95	56.21	62.04	63.87	-0.17	-0.13
	Middle	Yes	37.93	50.02	52.02	47.44	+0.28	+0.19
		No	61.10	51.54	58.46	59.85	-0.05	-0.02
	High	Yes	31.56	39.42	40.89	34.80	+0.19	+0.06
		No	49.87	53.84	53.53	53.79	+0.07	+0.08

By gender, the results in Table 3 indicate that there is an increase in math proficiency of about the same magnitude for both males and females over the four-years (2004/05-2007/08) for schools with focus on math at all school levels. For schools without focus on math, regardless of gender, there is a decrease in math proficiency at the elementary and middle school levels and an increase at the high school level. The largest increase in math proficiency over the four-years (2004/05-2007/08) is for the elementary schools with focus on math for males $(E S=0.18)$ and females $(E S=0.20)$. The largest decrease in math proficiency is for the elementary schools without focus on math for males $(E S=-0.13)$ and females $(E S=-0.13)$.

By ethnicity, the results in Table 4 indicate that the largest increase in math proficiency over the four years (2004/05-2007/08) at the elementary school level is for Asian students (ES = $0.35)$ followed by African-American students $(E S=0.31)$ and Hispanic students $(E S=0.19)$ — all in schools with focus on math. At the middle school level, the largest increase in math proficiency is for African-American students $(E S=0.78)$ followed at much lower level by Hispanic students $(E S=0.19)$ and Asian students $(E S=0.05)$ - all in schools with focus on math. At the high school level, the largest increase in math proficiency is for African-American students $(E S=0.97)$ followed at much lower level by Asian students $(E S=0.04)$ and Hispanic students $(E S=0.01)$ - all in schools with focus on math. At all school levels, for schools with focus on math, White students demonstrate an increase in math proficiency over the first three years (2004/05-2006/07) followed by a decrease at the end year (2007/08) of the four-year period of time. For schools without focus on math, White students have a sustained decrease in math
proficiency at the elementary and middle school level and a sustained increase at the high school level. Finally, the ethnic group Other exhibits a relatively large sustained decrease at all school levels for both schools with and without focus on math, with the largest decrease at the high school level for schools with focus on math ($E S=-1.30$).
Table 4
Longitudinal Changes in Mathematics Proficiency by Ethnicity and School Focus on Math

Ethnicity	School Level	MSP Focus on Math	Percent at or above proficient				Effect Size of Change	
			2004/05	2005/06	2006/07	2007/08	2004/05-06/07	2004/05-07/08
White	Elem.	Yes	79.70	81.40	81.99	77.24	+0.06	-0.06
		No	77.39	64.11	70.48	71.05	-0.16	-0.14
	Middle	Yes	65.90	73.11	76.28	56.95	+0.22	-0.18
		No	72.52	61.81	70.08	69.49	-0.05	-0.07
	High	Yes	63.93	61.52	71.79	56.15	+0.17	-0.16
		No	67.95	72.91	73.25	72.40	+0.11	+0.10
AfricanAmerican	Elem.	Yes	37.80	53.42	56.09	53.26	+0.37	+0.31
		No	57.54	48.12	51.38	52.73	-0.12	-0.10
	Middle	Yes	13.75	45.60	52.42	48.71	+0.86	+0.78
		No	47.69	40.01	47.17	48.39	-0.01	+0.01
	High	Yes	6.23	7.03	53.56	44.31	+1.14	+0.95
		No	36.40	44.65	45.46	47.02	+0.18	+0.21
Hispanic	Elem.	Yes	52.25	53.50	57.46	61.54	+0.10	+0.19
		No	53.00	38.65	43.30	43.40	-0.19	-0.19
	Middle	Yes	27.33	30.27	31.61	36.23	+0.09	+0.19
		No	34.94	30.83	31.36	32.35	-0.08	-0.05
	High	Yes	24.84	24.12	25.47	25.08	+0.01	+0.01
		No	29.07	28.88	27.62	32.37	-0.03	+0.07
Asian	Elem.	Yes	68.84	84.11	85.99	83.50	+0.42	+0.35
		No	84.88	71.00	75.96	70.92	-0.23	-0.34
	Middle	Yes	81.06	82.25	81.60	82.84	+0.01	+0.05
		No	71.04	68.97	69.11	70.16	-0.04	-0.02
	High	Yes	36.10	40.00	53.73	38.16	+0.36	+0.04
		No	56.47	59.72	61.63	60.51	+0.10	+0.08
Other	Elem.	Yes	78.73	59.84	64.98	56.25	-0.31	-0.49
		No	73.68	54.62	45.81	48.93	-0.58	-0.51
	Middle	Yes	65.07	69.72	45.24	45.68	-0.40	-0.39
		No	55.57	42.84	46.98	51.79	-0.17	-0.08
	High	Yes	85.58	81.91	30.41	25.87	-1.19	-1.30
		No	49.46	22.03	41.01	39.10	-0.17	-0.21

For special education students, the results in Table 5 show that the largest increase in math proficiency over the four years (2004/05-2007/08) is for elementary schools with focus on math $(E S=0.25)$ followed by a smaller increase for middle schools with focus on math $(E S=0.08)$. For elementary and middle schools without focus on math, however, there is a decrease in math proficiency $(E S=-0.17$ and $E S=-0.03$, respectively). For high schools with focus on math, there
is an increase over the first three years (2004/05-2006/07) followed by a decrease at the end year (2007/08). For high schools without focus on math, there is a sustained increase in math proficiency $(E S=0.12)$ over the four-year period of time (2004/05-2007/08).

For students with limited English proficiency, there is a sustained increase in math proficiency over the four years (2004/05-2007/08) for schools with focus on math at all school levels - elementary $(E S=0.20)$, middle $(E S=0.18)$, and high $(E S=0.04)$. For schools without focus on math, there is relatively large decrease in math proficiency at the elementary school level ($E S=-0.48$), a very small decrease at the middle school level $(E S=-0.02)$, and a small increase at the high school level $(E S=0.06)$.

Table 5
Longitudinal Changes in Mathematics Proficiency for Special Education (SED) and Limited English Proficiency (LEP) Students by School Focus on Math

$\begin{aligned} & \text { SED } \\ & \text { LEP } \end{aligned}$	School Level	MSP Focus on Math	Percent at or above proficient				Effect Size	
			2004/05	2005/06	2006/07	2007/08	2004/05-06/07	2004/05-07/08
Special Education Students (SED)	Elem.	Yes	30.23	41.02	45.52	42.14	+0.32	+0.25
		No	37.64	27.40	28.32	29.48	-0.20	-0.17
	Middle	Yes	15.27	21.32	24.12	18.12	+0.22	+0.08
		No	24.75	17.03	18.13	23.63	-0.16	-0.03
	High	Yes	9.05	9.78	13.16	8.42	+0.13	-0.02
		No	21.92	30.21	24.61	26.98	+0.06	+0.12
Limited English Proficiency (LEP)	Elem.	Yes	50.20	50.30	55.48	60.42	+0.10	+0.20
		No	50.33	31.82	28.73	27.27	-0.45	-0.48
	Middle	Yes	20.80	23.35	25.67	28.36	+0.12	+0.18
		No	25.99	20.08	30.51	25.28	+0.10	-0.02
	High	Yes	23.44	22.56	25.00	24.95	+0.04	+0.04
		No	23.02	20.12	29.17	25.43	+0.14	+0.06

Science

The percent of students at or above proficient on state assessments in science by school level (elementary, middle, and high) for all schools with MSP-MIS student achievement data at any of the five years (2003/04-2007/08) was computed from the data in Appendix A (right panel) and graphically presented in Figure 8. Regarding the overall change in percent of students at or above proficient in science, there are intermediate fluctuations from first year (2003/04) to the end year (2007/08) resulting in (a) an increase of about 19\% at the elementary school level, (b) an increase of about 6% at the middle school level, and (c) a decrease of about 9% at the high school level. The longitudinal data for the five-year time period—only schools that have reported

MSP-MIS student achievement data at each of the five years (2003/05-2007/08)—produces a trend of a sustained increase from first year (2003/04) to the end year (2007/08) at all school levels (elementary, middle, and high). As depicted in Figure 9, there is an increase of about 17\%, 11%, and 4% at the elementary, middle, and high school level, respectively. Further, the longitudinal data for the targeted four-year time period (2004/05-2007/08), with larger samples of schools for this time period compared to the five-year longitudinal data, produces (a) an increase of about 4% at the elementary school level, (b) a decrease of about 17% at the middle school level, and (c) an increase of about 2\% at the high school level, from year 2004/05 to the end year (2007/08). Graphically, this trend is depicted in Figure 10.

Further refinement of the trend depicted in Figure 10 was achieved by investigating the effect size of longitudinal changes in science proficiency across the four-year period of time (2004/05-2007/08) for schools with (or without) focus on science. The results are depicted in Figures 11, 12, and 13 and tabulated in Tables 6, 7, 8, and 10 across school levels and student demographics (gender, ethnicity, special education, and limited English proficiency). The results for elementary schools in Table 6 (see also Figures 11), show that there is a sustained increase in science proficiency for both schools with and without focus on science, with slightly large effect size $(E S=0.10$ versus $E S=0.06)$ in favor of schools without focus on science over the four-year period of time (2004/05-2007/08).

The results for middle schools in Table 6, graphically depicted in Figure 12, show that there is a substantial decrease of about 27% in science proficiency from year 2004/05 to the end year 2007/08, with a large effect size ($E S=-0.56$), for schools without focus on science. Conversely, there is an increase of about $7 \%(E S=0.14)$, for schools with focus on science over the same period of time (2004/05-2007/08). Clearly, the overall decrease in science proficiency for middle schools depicted in Figure 10 (for schools with and without focus on science together) is due to a decrease in schools without focus on science over the four-year period of time.

The results for high schools in Table 6, graphically depicted in Figure 13, show that there is a sustained increase in science proficiency of about $8 \%(E S=0.17)$ for schools without focus on science over the four-year period of time (2004/05-2007/08). For schools with focus on science, there is an increase in science proficiency of about $6 \%(E S=0.13)$ over the first three years of this time period (2004/05-2006/07) followed by a decrease of about 8% across the last two years of this time period (from 2006/07 to 2007/08).

Figure 8. Percent of students at or above proficient on state assessments in science by school level (elementary, middle, and high) for all schools with MSP-MIS student achievement data at any of the five years (2003/04-2007/08).

Note. $N=$ Number of schools; $P=$ Percent of students at or above proficient in science

Figure 9. Percent of students at or above proficient on state assessments in science for the same schools with MSP-MIS student achievement data across all five years (2003/04-2007/08).

Figure 10. Percent of students at or above proficient on state assessments in science for the same schools with MSP-MIS student achievement data across four years (2004/05-2007/08).

Figure 11. Percent of students at or above proficient on state assessments in science for the elementary schools with MSP-MIS student achievement data at each of the four years (2004/052007/08) by school focus on science.

Figure 12. Percent of students at or above proficient on state assessments in science for the middle schools with MSP-MIS student achievement data at each of the four years (2004/052007/08) by school focus on science.

Figure 13. Percent of students at or above proficient on state assessments in science for the high schools with MSP-MIS student achievement data at each of the four years (2004/05-2007/08) by school focus on science.

Table 6
Longitudinal School Changes in Science Proficiency

School Year	Percent Proficient Students		Effect Size (ES) of Change	
	MSP FOCUS ON SCIENCE		MSP FOCUS ON SCIENCE	
	YES	NO	YES	NO
Elementary Schools			2004/05-07/08	
2004/05	$\begin{aligned} & \quad \text { 40.52\% } \\ & \text { Students: } 6,527 \\ & \text { Schools: } 48 \end{aligned}$	$$	Increase $E S=+0.06$	Increase $E S=+0.10$
2005/06	$$	$$	2004/05-06/07	
			Increase$E S=+0.07$	Increase$E S=+0.01$
2006/07	$\begin{aligned} & \hline \text { 43.90\% } \\ & \text { Students: } 6,009 \\ & \text { Schools: } 48 \\ & \hline \end{aligned}$	\quad 42.42\% Students: 6,323 Schools: 88		
2007/08	$\begin{aligned} & \quad \text { 43.41\% } \\ & \text { Students: } 5,704 \\ & \text { Schools: } 48 \end{aligned}$	$\begin{aligned} & \text { 47.13\% } \\ & \text { Students: 6,423 } \\ & \text { Schools: } 88 \end{aligned}$		
Middle Schools			2004/05-07/08	
2004/05	\quad 49.67\% Students: 9,656 Schools: 43	$\begin{gathered} \text { 71.27\% } \\ \text { Students: 22,784 } \\ \text { Schools: } 46 \end{gathered}$	Increase $E S=+0.14$	Decrease $E S=-0.56$
2005/06	52.13\% Students: 9,325 Schools: 43	$\quad \mathbf{5 6 . 6 0 \%}$ Students: 23,008 Schools: 46	2004/05-06/07	
			Increase$E S=+0.06$	Decrease$E S=-0.24$
2006/07	$\begin{aligned} & \quad \text { 52.66\% } \\ & \text { Students: } 8,850 \\ & \text { Schools: } 43 \end{aligned}$	$\begin{gathered} \text { 59.71\% } \\ \text { Students: } 22,967 \\ \text { Schools: } 46 \end{gathered}$		
2007/08	\quad 56.76\% Students: 8,476 Schools: 43	$\begin{aligned} & \text { 44.20\% } \\ & \text { Students: } 21,541 \\ & \text { Schools: } 46 \end{aligned}$		
High Schools			2004/05-07/08	
			Decrease$E S=-0.07$	Increase$E S=+0.17$
2004/05	$\begin{aligned} & \text { 25.96\% } \\ & \text { Students: } 18,978 \\ & \text { Schools: } 45 \end{aligned}$	$\begin{aligned} & \quad \mathbf{6 3 . 0 8 \%} \\ & \text { Students: } 23,431 \\ & \text { Schools: } 80 \\ & \hline \end{aligned}$		
2005/06	$$	\quad 66.63\% Students: 22,612 Schools: 80	2004/05-06/07	
			Increase$E S=+0.13$	Increase$E S=+0.08$
2006/07	\quad 31.83\% Students: 17,638 Schools: 45	\quad 66.94\% Students: 23,210 Schools: 80		
2007/08	$\begin{aligned} & \text { 23.11\% } \\ & \text { Students: 20,464 } \\ & \text { Schools: } 45 \end{aligned}$	$\begin{aligned} & \text { 70.87\% } \\ & \text { Students: 23,603 } \\ & \text { Schools: } 80 \end{aligned}$		

Table 7
Longitudinal Changes in Science Proficiency by Gender and School Focus on Science

Gender	School Level	MSP Focus on Science	Percent at or above proficient				Effect Size	
			2004/05	2005/06	2006/07	2007/08	2004/05-06/07	2004/05-07/08
Males	Elem.	Yes	20.82	47.25	45.36	41.37	+0.53	+0.45
		No	42.11	42.18	40.80	46.02	-0.02	+0.08
	Middle	Yes	48.65	52.24	51.54	57.94	+0.06	+0.19
		No	59.96	57.69	58.86	42.37	-0.02	-0.35
	High	Yes	11.49	24.63	30.22	20.31	+0.47	+0.24
		No	62.09	66.34	66.68	70.18	+0.10	+0.17
Females	Elem.	Yes	18.77	43.43	41.23	44.36	+0.50	+0.56
		No	42.34	44.60	44.10	48.26	+0.04	+0.12
	Middle	Yes	48.98	51.39	51.34	55.54	+0.05	+0.13
		No	59.08	58.98	61.45	42.61	+0.05	-0.33
	High	Yes	8.11	24.39	28.54	19.08	+0.54	+0.32
		No	64.11	66.92	69.52	71.60	+0.11	+0.16

By gender, the results in Table 7 indicate that there is an increase in science proficiency of about the same magnitude for both males and females over the four-years (2004/05-2007/08) for schools with focus on science at all school levels. For schools without focus on science, regardless of gender, there is a decrease in science proficiency at the middle school levels and an increase at the elementary and high school level. The largest increase in science proficiency over the four-years (2004/05-2007/08) is for the elementary schools with focus on science for males $(E S=0.45)$ and females $(E S=0.56)$. The largest decrease in science proficiency is for the middle schools without focus on science for males $(E S=-0.35)$ and females $(E S=-0.33)$.

By ethnicity, the results in Table 8 indicate that the largest increase in science proficiency over the four years (2004/05-2007/08) is for African-American students at the high and elementary schools with focus on science ($E S=1.20$ and $E S=0.68$, respectively) followed by Asian students in the elementary schools with focus on science $(E S=0.49)$ and Hispanic students in the elementary schools with focus on science ($E S=0.40$). Conversely, the largest decrease is for White students in the middle schools without focus on science ($E S=-1.36$) and the ethnic group Other in the high and elementary schools with focus on science ($E S=-1.10$ and $E S=-1.00$, respectively). Noteworthy is the sharp decrease in science proficiency for White students in the high schools with focus on science - from a strong increase ($E S=1.44$) over the first three years (2004/05-2006/07 to an overall decrease ($E S=-0.01$) over the four-year period of time (2004/05-2007/08) due to a sharp decrease at the end year of this time period (2007/08).

Table 8
Longitudinal Changes in Science Proficiency by Ethnicity and School Focus on Science

Ethnicity	School Level	MSP Focus on Science	Percent at or above proficient				Effect Size of Change	
			2004/05	2005/06	2006/07	2007/08	2004/05-06/07	2004/05-07/08
White	Elem.	Yes	70.15	86.78	86.81	64.66	+0.41	-0.12
		No	46.94	48.51	48.07	54.62	+0.02	+0.15
	Middle	Yes	57.69	60.74	61.06	63.10	+0.07	+0.11
		No	94.01	82.05	82.76	35.95	-0.36	-1.36
	High	Yes	12.92	24.43	78.44	12.47	+1.44	-0.01
		No	75.11	76.05	76.24	79.30	+0.03	+0.10
African- American	Elem.	Yes	15.03	57.29	45.21	45.27	+0.68	+0.68
		No	35.95	38.12	37.36	37.42	+0.03	+0.03
	Middle	Yes	43.13	45.69	44.17	51.76	+0.02	+0.17
		No	52.20	45.97	48.21	47.91	-0.08	-0.09
	High	Yes	1.62	3.97	52.10	44.42	+1.36	+1.20
		No	42.91	49.10	50.18	57.78	+0.15	+0.30
Hispanic	Elem.	Yes	13.35	17.88	20.60	29.37	+0.19	+0.40
		No	38.66	38.79	35.90	33.75	-0.06	-0.10
	Middle	Yes	37.26	40.64	36.64	30.52	-0.01	-0.14
		No	45.01	29.20	32.99	34.30	-0.25	-0.22
	High	Yes	10.40	9.76	12.50	12.15	+0.06	+0.06
		No	40.31	49.37	46.18	55.95	+0.12	+0.31
Asian	Elem.	Yes	54.44	78.01	83.33	77.40	+0.64	+0.49
		No	57.14	66.07	52.38	51.64	-0.10	-0.11
	Middle	Yes	63.51	63.01	59.78	63.24	-0.08	-0.01
		No	84.62	78.95	81.71	61.47	-0.08	-0.53
	High	Yes	23.71	26.84	37.07	25.35	+0.29	+0.04
		No	75.80	80.57	40.53	82.78	-0.73	+0.17
Other	Elem.	Yes	87.35	71.11	63.64	42.40	-0.57	-1.00
		No	57.14	53.85	49.56	47.05	-0.15	-0.20
	Middle	Yes	83.09	62.07	52.91	61.36	-0.66	-0.49
		No	76.10	75.25	74.60	44.70	-0.03	-0.66
	High	Yes	62.80	63.58	30.00	12.72	-0.67	-1.10
		No	45.88	26.13	39.31	30.36	-0.13	-0.32

For special education students, the results in Table 9 indicate that, despite a decrease at the end year (2007/08) of the four-year time period (2004/05-2007/08), there is an overall increase in science proficiency for the elementary, middle, and high schools with focus on science ($E S=$ $0.24, E S=0.20$, and $E S=0.07$, respectively) across the four years. The largest decrease in science proficiency on the four-year period of time (2004/05-2007/08) is for the middle schools without focus on science ($E S=-0.54$).

For students with limited English proficiency (LEP), the results (still in Table 9) show that there is a sustained increase in science proficiency over the four years (2004/05-2007/08) for the elementary and middle schools with focus on science ($E S=0.35$ and $E S=0.46$, respectively).

For the high schools with focus on science, there is a shift from a slight increase ($E S=0.02$) over the first three years (2004/05-2007/08) to a slight decrease ($E S=-0.01$) over the four-year period of time (2004/05-2007/08). It is worth noting also that there is an increase in science proficiency over the four years (2004/05-2007/08) for schools without focus on science at all school levels (elementary, middle, and high).

Table 9

Longitudinal School Changes in Science Proficiency for Special Education (SED) and
Limited English Proficiency (LEP) Students by School Focus on Science

$\begin{aligned} & \text { SED } \\ & \text { LEP } \end{aligned}$	School Level	MSP Focus on Science	Percent at or above proficient				Effect Size	
			2004/05	2005/06	2006/07	2007/08	2004/05-06/07	2004/05-07/08
Special Education Students (SED)	Elem.	Yes	13.33	53.00	42.60	22.60	+0.67	+0.24
		No	19.85	25.41	23.59	25.84	+0.09	+0.14
	Middle	Yes	18.00	20.69	18.95	26.48	+0.02	+0.20
		No	48.91	29.06	30.51	23.12	-0.38	-0.54
	High	Yes	1.73	2.55	5.92	2.72	+0.23	+0.07
		No	26.01	29.67	32.89	38.80	+0.15	+0.27
Limited English Proficiency (LEP)	Elem.	Yes	5.87	10.96	12.02	16.49	+0.21	+0.35
		No	23.52	28.61	26.48	28.77	+0.07	+0.12
	Middle	Yes	7.62	17.51	16.93	24.02	+0.29	+0.46
		No	3.17	12.17	11.90	9.51	+0.35	+0.27
	High	Yes	3.18	3.80	3.64	3.02	+0.02	-0.01
		No	25.14	33.43	33.89	33.25	+0.19	+0.18

Schools by Direction of Change in Math and Science Proficiency

The results in this section relate to the second research question, RQ2: "What is the distribution of MSP-related schools across categories of change (increase, decrease, or no change) in math and science proficiency over the targeted four-year period of time (2004/052007/08) for schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject?" Specifically, this section provides information about the percentage of schools by direction of change in math and science proficiency over the time period from year 2004/05 to the end year (2007/08) — see Figures 14, 15, and 16, for math, and Figures 17, 18, and 19 , for science.

For math proficiency, the percentage of schools with an increase is much higher than the percentage of schools with a decrease at all (elementary, middle, and high) school levels. For schools that fall into the "increase" category, the percentage of schools with MSP focus on math is much higher than the percentage of schools without MSP focus on math for the elementary
schools (32.8% versus 19.9%) and the middle schools (50.4% versus 26.0%). At the high school level, the increase in math proficiency is at a higher rate for schools without MSP focus on math (36.8\%) compared to schools with MSP focus on math (23.2\%).

Figure 14. Percentage of elementary schools with (or without) MSP focus on math by direction of change (decrease, no change, increase) in math proficiency.

Figure 15. Percentage of middle schools with (or without) MSP focus on math by direction of change (decrease, no change, increase) in math proficiency.

Figure 16. Percentage of high schools with (or without) MSP focus on math by direction of change (decrease, no change, increase) in math proficiency.

For science proficiency, the percentage of schools with a four-year increase is much higher than the percentage of schools with a four-year decrease at all school levels. Also, for the schools that fall into the "increase" category, the percentage of schools with MSP focus on science is much higher than the percentage of schools without MSP focus on science for the elementary schools (66.7% versus 25.0%) and the middle schools (60.5% versus 28.3%), but at the high school level the schools without MSP focus on science increase in science proficiency at higher rate (36.3\%) compared to schools with MSP focus on science (28.9\%).

Figure 17. Percentage of elementary schools with (or without) MSP focus on science by direction of change (decrease, no change, increase) in science proficiency.

Figure 18. Percentage of middle schools with (or without) MSP focus on science by direction of change (decrease, no change, increase) in science proficiency.

Figure 19. Percentage of high schools with (or without) MSP focus on science by direction of change (decrease, no change, increase) in science proficiency.

Longitudinal Growth Trajectories in School Math and Science Proficiency

The results in this section relate to the third research questions, RQ3: "What are the longitudinal growth trajectories (with possible latent classes of such trajectories) in math and science proficiency across the four-year period (2004/05 - 2007/08) for schools with MSP focus on the subject (math or science) and schools without MSP focus on the subject?" Graphically, the longitudinal growth model (LGM) of change in school math and science proficiency across four years (2004/05-2007/08) is depicted in Figure 1. To examine for possible latent classes of growth trajectories in math (or science) proficiency, this model was upgraded with adding a latent class component (not shown in Figure 1 for space consideration). The resulting model is referred to as growth mixture model (GMM; e.g., Muthén, 2004). All computations were performed using the computer program for statistical analysis with latent variables Mplus (Muthén \& Muthén, 2007).

Based on preliminary data analyses (e.g., see Figures 4 and 10), the growth trajectories in math and science proficiency were tested for both linear and nonlinear (e.g., quadratic) shape using the Lo-Mendel-Rubin Adjusted Likelihood Ratio Test (LMR-Adj. LRT). The results are summarized in Table 10, where the number of classes retained and the shape of the growth trajectories identified through the testing procedure are given in bold. A statistically significant LMR-Adj. LRT indicates that the number of classes being tested under a specified shape of growth trajectories (e.g., liner or quadratic) is more appropriate compared to the number of classes specified in the preceding step of the testing procedure. The magnitude of Entropy is also taken into account. The closer the Entropy to 1.00, the more suitable the tested model for number of classes and shape of growth trajectories (a value of .80 or higher is considered acceptable). The results in Table 10, related to latent classes of growth trajectories for student proficiency in math and science across the four-year period of time (2004/05-2007/08), are discussed next. As noted earlier (see Method section, p. 10), the arcsin-root transformation of the proportion of students at or above proficient was the outcome variable across the four-years (2004/05-2007/08) in the growth mixture modeling used to address RQ3. Along with investigating the rate of change in math (or science) proficiency for schools with focus on math (or science) compared to schools without focus on math (or science), possible dependence (association) between school membership to latent classes of growth trajectories and "focus on the subject" (math or science) was also tested using a chi-square test for association between categorical variables.

Mathematics

At the elementary school level, the results in Table 10 indicate that there is a single class of linear growth trajectories for student proficiency in math (note that the LMR-Adj. LRT in testing
for two latent classes is not statistically significant). The goodness-of-fit indexes for this single class indicated a reasonable data fit of the model: $\chi^{2}(5)=11.581, p=.041$; CFI $=.961$, TLI $=$.953 , RMSEA $=.058$, SRMR $=.019$. The growth trajectories are depicted in Figure 20.

Table 10
Testing for Latent Classes of Growth Trajectories in Math and Science Proficiency Across Four Years (2004/05-2007/08) by School Level

Subject/School level	Number of latent classes $^{\text {a }}$	Shape of latent class trajectories	Entropy	LMR- Adj. LRT	p-value
Math/ Elementary	One Two	Linear Linear	$\overline{-} \overline{0.804}$	553.450	$\overline{.} \overline{108}$
Math/ Middle	Two Three	Quadratic Quadratic	$\begin{aligned} & 0.867 \\ & 0.850 \end{aligned}$	$\begin{gathered} \text { 403.28*** } \\ 135.305 \end{gathered}$	$\begin{aligned} & .0001 \\ & .335 \end{aligned}$
Math/ High	Two Three Four Five	Quadratic Quadratic Quadratic Quadratic	$\begin{aligned} & 0.891 \\ & 0.943 \\ & 0.971 \\ & 0.952 \\ & \hline \end{aligned}$	$\begin{gathered} 315.197^{*} \\ 296.543^{*} \\ \text { 182.069*** } \\ 95.162 \end{gathered}$	$\begin{aligned} & .024 \\ & .016 \\ & .001 \\ & .240 \\ & \hline \end{aligned}$
Science/ Elementary	Two Three	Linear Linear	$\begin{aligned} & 1.000 \\ & 0.926 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { 365.129*** } \\ 154.815 \end{gathered}$	$\begin{aligned} & <.001 \\ & .0761 \end{aligned}$
Science/Middle	Two Three	Linear Linear	$\begin{aligned} & 0.883 \\ & 0.934 \end{aligned}$	$\begin{gathered} \hline 145.709^{*} \\ 79.019 \end{gathered}$	$\begin{aligned} & .010 \\ & .230 \end{aligned}$
Science/High	Two Three	Linear Linear	$\begin{aligned} & 0.987 \\ & 0.925 \end{aligned}$	$\begin{gathered} \hline \text { 399.184*** } \\ 80.051 \end{gathered}$	$\begin{aligned} & \hline \text { <. } 001 \\ & .098 \end{aligned}$

Note: LMR-Adj. LRT = Lo-Mendel-Rubin Adjusted Likelihood Ratio Test.
The conclusions about the number of latent classes was also supported by the estimates of some other indexes such as AIC (Akaike Information Criterion) and Adj. BIC = Sample-Size Adjusted Bayesian Information Criterion. These indexes are not reported here for space consideration and clarity of interpretation as LMR-Adj. LRT is considered more dependable.
${ }^{\text {a }}$ The number of classes retained and the shape of the growth trajectories are given in bold.
At the middle school level, the results in Table 10 indicate that there are two latent classes of quadratic growth trajectories in math proficiency across the four years (2004/052007/08). To avoid confusion, instead of representing individual growth trajectories for these two latent classes, provided in Figure 21 are only the estimated means of the trajectories at each of the four years. As can be seen, the first class (Class 1), which contains 51.1% of the growth trajectories (i.e., 51.1% of the middle schools belong to this class), consistently exceeds the second class (Class 2, 49.9\%) in math proficiency across the four years. However, the trends of
changes in math proficiency delineated by the two classes of growth trajectories are different. Specifically, while the lower performing schools (in Class 2) demonstrate a sustained increase, the better performing schools exhibit a quadratic trend of a slight initial increase followed by a slight decrease in math proficiency across the four years (2004/05-2007/08).

Figure 20. A single class of linear growth trajectories in math proficiency across four years (2004/05-2007/08) for the elementary schools.

Note. On the vertical axis are the school scores (arcsin-root transformation of the proportion of students at or above proficient) for individual growth trajectories across the four years.

At the high school level, the results in Table 10 indicate that there are four latent classes of quadratic growth trajectories in math proficiency across the four years (2004/05-2007/08). The estimated means of these trajectories at each of the four years are depicted in Figure 22. As can be seen, the first three classes contain schools with relatively stable performance and almost negligible change across the four years, with Class 2 (25.1% of the high schools) performing consistently higher than Class 3 (53.2% of the high schools) and Class 1 (16.9% of the high schools). Class 4, which contains the smallest percent of high schools (4.7\%), demonstrates a quadratic trend of initial increase (2004/05-2005/06) followed by a sharp decrease (2005/062007/08) in trajectories of math proficiency over the four-year period of time (2004/05-2007/08).

Figure 21. Two latent classes of quadratic growth trajectories in math proficiency across four years (2004/05-2007/08) for the middle schools.

Figure 22. Four latent classes of quadratic growth trajectories in math proficiency across four years (2004/05-2007/08) for the high schools.

The results from the growth analyses of math proficiency also indicated that the elementary and middle schools with focus on math increased at a higher rate in math proficiency compared to their counterparts without focus on math, but the rate of change in math proficiency for the high schools does not depend on whether the schools are with or without focus on math across the identified latent classes across the four-year period of time. It was also found that, for both schools with and without focus on math, schools with lower initial status (i.e., lower percent of students at or above proficient in math) tend to increase at a higher rate in math proficiency over the four-year period of time.

Table 11

Frequency of Schools with (or without) Focus on Math that Fall Into Latent Classes of Growth Trajectories in Math Proficiency Across Four Years (2004/05-2007/08) and Chi-square Tests for Dependence Between Class Membership and Focus on Math (Yes/No) by School Level

SUBJECT/School Level/Class	Description ${ }^{1}$	Focus on math		Statistical Class x Focus Dependence ${ }^{2}$
MATHEMATICS		Yes	No	
Elementary				
A single class	A slight overall increase	247	146	NA
Middle				
Class 1 (51.1\%)	Higher level: slight increase followed by a slight decrease	59	55	$\chi^{2}(1)=2.59$
Class 2 (49.9\%)	Lower level: slight sustained increase	74	45	
High				
Class 1 (16.9\%)	Lowest level: no changes	12	20	$\chi^{2}(3)=11.17^{*}$
Class 2 (25.1\%)	Higher than Classes 1 and 3: no changes	25	23	
Class 3 (53.2\%)	Higher than Class 1: no changes	49	52	
Class 4 (16.9\%)	Highest start with a sharp initial increase followed by a sharp decrease	9	0	

Note. In the first column, given in parentheses is the percentage of schools that fall into the respective class. The numbers in the column "Focus of math" show the frequency of schools with or without focus on math that fall into the respective class.
${ }^{1}$ A higher level class means higher average proficiency in math across the four years (2004/052007/08) for the schools that fall into this class.
${ }^{2}$ A statistically significant chi-square value [asterisk(s) assigned] indicates dependence between class membership of the schools and their "focus on math" status (Yes/No).

* $p<.05 .{ }^{* *} p<.01 .{ }^{* * *} p<.001$.

Table 11 provides information about (a) the frequency of schools with and without focus on math that fall within identified latent classes of math proficiency across the four years (2004/05-

2007/08) and (b) a Pearson chi-square test for dependence between class membership and focus on math (Yes/No) by school level (elementary, medium, and high). For the elementary schools, the chi-square test is not appropriate as all schools fall within a single class of growth trajectories with a slight overall increase in math proficiency. At the middle school level, the chi-square test is not statistically significant thus indicating the lack of dependence between class membership and focus on math (Yes/No). That is, the schools with (or without) focus on math are neither overrepresented nor underrepresented into some of the two latent classes of math proficiency. At the high school level, however, the chi-square test is statistically significant thus indicating that there is a dependence between class membership and focus on math (Yes/No). Particularly salient in this regard is the overrepresentation of schools with focus on math in Class 4. This class exhibits the highest start in 2004/05 and a sharp initial increase followed by a sharper decrease in math proficiency (see Figure 22) - there are nine high schools with focus on math that fall into Class 4, whereas none of the high schools without focus on math falls into Class 4. To a large degree (if not entirely), this finding can explain the decrease in math proficiency for high schools with focus on math at the end year (2007/08) - see Figure 7.

Science

The results in Table 10 for science indicate that there are two latent classes of linear growth trajectories across the four years (2004/05-2007/08) at all school levels (elementary, middle, and high). For the elementary schools, the estimated means of linear growth trajectories in two latent classes are depicted in Figure 23. The first class (Class 1, 26.5\% of the elementary schools) is consitently lower than the second class (Class 2, 73.5\% of the elementary schools), yet provides a more pronounced trend of sustained increase across the four years.

For the middle schools, the estimated means of linear growth trajectories in the two latent classes are depicted in Figure 24. In this case, the lower performing class (Class 1, 57.3\% of the middle schools) provides a trend of sustained increase, whereas the higher performing class (Class 2, 42.7% of the middle schools) provides a trend of sustained decrease, across the four years (2004/05-2007/08).

For the high schools, the estimated means of linear growth trajectories in the two latent classes are depicted in Figure 25. The first class (Class 1, 62.4\% of the high schools) performs better than the second class (Class 2, 37.6% of the high schools) but there is a trend of no change in science proficiency across the four years (2004/05-2007/08) for the high schools in each of these two latent classes.

Figure 23. Two latent classes of linear growth trajectories in science proficiency across four years (2004/05-2007/08) for the elementary schools.

Note. On the vertical axis is the estimated mean of the school score (arcsin-root transformation of the proportion of students at or above proficient) for each latent class across the four years.

Figure 24. Two latent classes of linear growth trajectories in science proficiency across four years (2004/05-2007/08) for the middle schools.

Note. On the vertical axis is the estimated mean of the school score (arcsin-root transformation of the proportion of students at or above proficient) for each latent class across the four years.

Figure 25. Two latent classes of linear growth trajectories in science proficiency across four years (2004/05-2007/08) for the high schools.

Note. On the vertical axis is the estimated mean of the school score (arcsin-root transformation of the proportion of students at or above proficient) for each latent class across the four years.

The results from the growth analyses of science proficiency also indicated the schools with focus on science tend to have lower initial status (lower percent of students at or above proficient in year 2004/05) at all school levels (elementary, middle, and high) compared to schools without focus on science. On the other hand, (a) there is no significant difference in rate of growth between schools with and without focus on science at the elementary school level, (b) middle schools with focus on science increase at higher rate compared to middle schools without focus on science, and (c) high schools without focus on science start higher (in 2004/05) and tend to increase at higher rate compared to high schools with focus on science across the four-year period of time (2004/05-2007/08).

Table 12 provides information about (a) the frequency of schools with and without focus on science that fall within identified latent classes of science proficiency across the four years (2004/05-2007/08) and (b) a Pearson chi-square test for dependence between class membership and focus on science (Yes/No). At all school levels, the chi-square test is statistically significant thus indicating that there is a dependence between class membership and focus on science (Yes/No) for the elementary, middle, and high schools. At the elementary school level, with two
latent classes of growth trajectories in science proficiency, (a) the schools with focus on science are overrepresented in Class 2-the higher-level class with a small sustained increase in growth trajectories-and (b) almost all schools without focus on science fall into Class 1-the lowerlevel class with a more pronounced sustained increase in growth trajectories across the four years (2004/05-2007/08). At the middle school level, with two latent classes of growth trajectories in science proficiency, (a) schools with focus on science dominate Class 2—the higher-level class with a small sustained increase-and (b) schools without focus on science dominate Class 1-the lower-level class with a very small sustained increase. At the high school level, with two latent classes of growth trajectories in science proficiency, both the schools with and without focus are represented at a higher rate in Class 1—the higher-level class of growth trajectories with no statistically significant changes across the four years (2004/05-2007/08). It should be noted that this finding does not provide a direct (if any) explanation of the decrease in science proficiency at the end year (2007/08) for high schools with focus on science (see Figure 19).

Table 12

Frequency of Schools with (or without) Focus on Science that Fall Into Latent Classes of Growth Trajectories in Science Proficiency Across Four Years (2004/05-2007/08) and Chi-square tests for Dependence Between Class Membership and Focus on Science (Yes/No) by School Level

SUBJECT/School Level/Class	Description ${ }^{1}$	Focus on science		Statistical Class x Focus
SCIENCE		Yes	No	
Elementary				
Class 1 (26.5\%)	Lower level: pronounced sustained increase	13	87	$\begin{aligned} & \chi^{2}(1)= \\ & 82.22^{* * *} \end{aligned}$
Class 2 (73.5\%)	Higher level: very small sustained increase	35	1	
Middle				
Class 1 (57.3\%)	Lower level: very small sustained increase	21	30	$\chi^{2}(1)=5.28 *$
Class 2 (42.7\%)	Higher level: small sustained decrease	25	13	
High				
Class 1 (62.4\%)	Higher level: no changes	35	43	$\chi^{2}(1)=7.09^{* *}$
Class 2 (37.6\%)	Lower level: no changes	10	37	

Note. In the first column, given in parentheses is the percentage of schools that fall into the respective class. The numbers in the column "Focus of science" show the frequency of schools with or without focus on science that fall into the respective class.
${ }^{1}$ A higher level class means higher average proficiency in science across the four years (2004/05-2007/08).for the schools that fall into this class.
${ }^{2}$ A statistically significant chi-square value [asterisk(s) assigned] indicates dependence between class membership of the schools and their "focus on science" status (Yes/No).

* $p<.05 .{ }^{* *} p<.01 .{ }^{* * *} p<.001$.

Relationship Between Targeted Teacher Participation in MSP-related Activities and Student

 Proficiency in Math and ScienceThe results in this section relate to the fourth research question, RQ4: "What is the relationship between schools' targeted teacher participation in MSP-related activities over the four-year time period (2004/05-2007/08) and the schools’ success in math and science proficiency at the end year of this time period (2007/08)?" Specifically, provided are results about the relationship between the targeted teacher participation in MSP-related activities over the span of four years (2004/05-2007/08) and the student proficiency in math and science at the end year (2007/08). The Pearson product-moment correlation coefficients for this relationship at the elementary, middle, and high school levels are provided in Table 13. The results indicate that the relationship between the targeted teacher participation in MSP-related activities and student proficiency is statistically significant and positive (yet, relatively small) (a) at the elementary and high school levels for math ($r=.148$ and $r=.273$, respectively), and (b) at the elementary and high school levels for science ($r=.013$ and $r=.376$, respectively). Clearly, the relationship of interest is relatively more substantial for science at the high school level ($r=.376$).

Table 13
Correlations Between Teacher Participation in MSP Activities
Across Four Years (2004/05, 2005/06, 2006/07, 2007/08) and
Student Proficiency at the End Year (2007/08)

Subject/	r	N	n
Mathematics			
Elementary	.148**	424	97892
Middle	. 031	327	170677
High	.273**	243	78491
Science			
Elementary	.013*	287	22922
Middle	. 011	222	58844
High	.376**	180	51482

Note: N = number of schools (used for the calculation of the correlation coefficient, r); $n=$ number of students who have taken the state assessment in these schools.
p $<.05$. ${ }^{ *} p<.01$.

Relationship Between Student Proficiency in Math (or Science) and Successful Completion of Math (or Science) Courses at the High School Level

The results in this section relate to the fifth research question, RQ5:" What is the relationship between the schools' success in math (or science) at any year of the time period 2004/05-2007/08 and the ratio indicating what proportion of the students who took the state examination in math (or science) have successfully completed a regular or advanced course in math (or a particular subject area in science-Biology, Chemistry, Physics, Earth and Science, or Integrated Science) that year?"

Table 14

Correlation Between Student Success in Mathematics (or Science) Courses and Proficiency on State Assessment in Mathematics (or Science) Across Four Years (2004/05, 2005/06, 2006/07, and 2007/08)

	2004/05	2005/06	2006/07	2007/08
MATHEMATICS				
Regular course	$\begin{gathered} .493 * * \\ (n=196) \end{gathered}$	$\begin{gathered} .038 \\ (n=181) \end{gathered}$	$\begin{gathered} .042 \\ (n=160) \end{gathered}$	$\begin{gathered} . \mathbf{4 1 7 * *} \\ (n=219) \end{gathered}$
Advanced course	$\begin{gathered} .158 \\ (n=114) \end{gathered}$	$\begin{gathered} . \mathbf{1 7 9}^{*} \\ (n=140) \end{gathered}$	$\begin{gathered} .005 \\ (n=136) \end{gathered}$	$\begin{gathered} .173 \\ (n=112) \end{gathered}$
SCIENCE				
Biology	$\begin{gathered} .477^{* *} \\ (n=136) \end{gathered}$	$\begin{gathered} .205^{*} \\ (n=152) \end{gathered}$	$\begin{gathered} .299^{* *} \\ (n=180) \end{gathered}$	$\begin{gathered} .290^{* *} \\ (n=146) \end{gathered}$
Chemistry	$\begin{gathered} .266^{* *} \\ (n=131) \end{gathered}$	$\begin{gathered} . \mathbf{1 9 0}^{*} \\ (n=149) \end{gathered}$	$\begin{gathered} .230^{* *} \\ (n=172) \end{gathered}$	$\begin{gathered} .193 \\ (n=141) \end{gathered}$
Physics	$\begin{gathered} .320^{* *} \\ (n=125) \end{gathered}$	$\begin{gathered} .224 \\ (n=62) \end{gathered}$	$\begin{gathered} .223^{* *} \\ (n=160) \end{gathered}$	$\begin{gathered} .072 \\ (n=126) \end{gathered}$
Earth and Science	$\begin{gathered} .228^{*} \\ (n=88) \end{gathered}$	$\begin{gathered} .085 \\ (n=96) \end{gathered}$	$\begin{gathered} .013 \\ (n=80) \end{gathered}$	$\begin{gathered} .172 \\ (n=47) \end{gathered}$
Integrated Science	$\begin{gathered} .347^{* *} \\ (n=95) \end{gathered}$	$\begin{gathered} .331^{* *} \\ (n=93) \end{gathered}$	$\begin{gathered} .165 \\ (n=129) \end{gathered}$	$\begin{gathered} .141 \\ (n=82) \end{gathered}$

Note. $n=$ Number of schools

* $p<.05$. ** $p<.01$.

For mathematics, the correlations in Table 14 indicate that the targeted relationship is statistically significant (at the .05 level of significance) only for high school students who
successfully completed (a) a regular math course in year 2004/05 ($r=.493$), (b) an advanced math course in year 2005/06 ($r=.179$), and (c) a regular course in math in year 2007/08 ($r=$.417). Thus, the relationship between the proficiency in math for high school students and their success in regular math courses is more clearly pronounced, compared to success in advanced courses, but this relationship is manifested only two years (2004/05 and 2007/08) of the fouryear period of time (2004/05-2007/08).

For science, the correlations in Table 14 indicate that there is a stable relationship between proficiency in science for high school students and their success in completing a course in Biology (the correlations vary from . 205 to .477). Although less pronounced, a similar trend emerges for successful completion of a course in Chemistry, Integrated Science, and Physics, yet not quite in Earth and Science. Overall, there is a promising relationship between proficiency in science and successful completion of a course in science for high students over the four-year period of time (2004/05-2007/08).

Discussion

This study examines longitudinal trends in MSP-related changes in student math and science proficiency using MSP-MIS data with the Annual K-12 District Survey for five years, 2003/04, 2004/05, 2005/06, 2006/07, and 2007/08. However, given that previous MSP-related studies (e.g., Dimitrov, 2008, 2009a, 2009b) have analyzed MSP-MIS longitudinal data that include the first year (2003/04), some descriptive analyses in this study used the 2003/04 data, but the longitudinal analyses were conducted using the MSP-MIS longitudinal data for the last four years (2004/05-2007/08) - i.e., only schools that have provided MSP-MIS data for each year of this four-year period of time. This led to larger samples and dependability of results from longitudinal analyses in this study. The results are summarized by the topics of the five research questions addressed in this study.

Trends of Changes in Math and Science Proficiency

Mathematics. Overall, there is an increase in math proficiency of about 18% at the elementary school level, about 11% at the middle school level, and about 7% at the high school level from the first year (2003/04) to the end year (2007/08). For the intermediate years within this time period, the increase is well sustained at the elementary school level, but there is a slight decrease at the end (from 2006/07 to 2007/08) at the middle and high school levels. The factor "MSP focus on math" was taken into account for longitudinal data over the targeted four-year period of time (2004/05-2007/08). At the elementary school level, (a) for schools without focus on math, there is an initial decrease in math proficiency of about 8% (from 2004/05 to 2005/06)
followed by a slight increase in math proficiency of about 2\% over the next three years (from 2005/06 to 2007/08), and (b) for schools with focus on math, there is a sustained increase in math proficiency of about 6% over the four years (2004/05-2007/08). At the middle school level, (a) for schools without focus on math, there is an initial decrease in math proficiency of about 2% (from 2004/05 to 2005/06) and an increase in math proficiency of about 2% over the next three years (from 2005/06 to 2007/08), and (b) for schools with focus on math, there is an increase in math proficiency of about 5\% over the first three years (from 2004/05 to 2006/07) and a decrease in math proficiency of about 4% at the end (from 2006/07 to 2007/08).

At the high school level, (a) for schools without focus on math, there is an overall increase in math proficiency of about 5%, with slight intermediate fluctuations, and (b) for schools with focus on math, there is an increase in math proficiency of about 2% over the first three years (2004/05-2006/07) followed by a decrease of about 5% at the end (from 2006/07 to 2007/08). This decrease can be partially (if not entirely) explained by simultaneous effects produced by a decline in math proficiency at the end year (2007/08) for (a) a latent class of nine high schools with focus on math (see Class 4 in Figure 22 and Table 11) and (b) a couple of ethnic groups specifically, a decline for White students and even stronger decline for students from the ethnic group Other (different from White, African-American, Hispanic, and Asian) in high schools with focus on math (see Table 4). Aside from this "bump" in math proficiency changes for high schools with focus on math, the largest "first year-end year" (2004/05-2007/08) increase in student math proficiency is for schools with MSP focus on math at the elementary school level.

Overall, the trend in mathematics proficiency for schools across this four-year period of time is the same for both males and females. Regardless of gender, the largest gap in math proficiency trends between schools with and without focus on math is at the elementary school level, where the largest increase in math proficiency is for schools with focus on math, whereas the largest decrease is for schools without focus on math.

By ethnicity, the largest increase in math proficiency over the four years (2004/05-2007/08) at the elementary school level is for Asian students followed (in this order) by AfricanAmerican students and Hispanic students - all in schools with focus on math. At the middle school level, the largest increase in math proficiency is for African-American students followed (in this order), at much lower level, by Hispanic students and Asian students - all in schools with focus on math. At the high school level, the largest increase in math proficiency is for African-American students followed (in this order), at much lower level, by Asian students and Hispanic students - all in schools with focus on math. At all school levels, for schools with
focus on math, White students demonstrate an increase in math proficiency over the first three years (2004/05-2006/07) followed by a decrease at the end year (2007/08) of the four-year period of time. For schools without focus on math, White students have a sustained decrease in math proficiency at the elementary and middle school level and a sustained increase at the high school level. The ethnic group Other exhibits a relatively large sustained decrease at all school levels for both schools with and without focus on math, with the largest decrease at the high school level for schools with focus on math.

For special education students, the largest increase in math proficiency over the four years (2004/05-2007/08) is for elementary schools with focus on math followed by a smaller increase for middle schools with focus on math. For elementary and middle schools without focus on math, there is a decrease in math proficiency. For high schools with focus on math, there is an increase over the first three years (2004/05-2006/07) followed by a decrease at the end year (2007/08). For high schools without focus on math, there is a sustained increase in math proficiency over the four-year period of time (2004/05-2007/08).

For students with limited English proficiency, there is a sustained increase in math proficiency over the four years (2004/05-2007/08) for schools with focus on math at all school levels (elementary, middle, and high). For schools without focus on math, there is relatively large decrease in math proficiency at the elementary school level, a very small decrease at the middle school level, and a small increase at the high school level.

Science. Overall, there is an increase of about 17% in science proficiency at the elementary school level, an increase of about 11% at the middle school level, and about 4% at the high school level from the first year (2003/04) to the end year (2007/08). For the intermediate years within this time period, the increase is well sustained at the elementary school level, but there are fluctuations at the middle and high school levels. The factor "MSP focus on science" was taken into account for longitudinal data over the targeted four-year period of time (2004/05-2007/08). At the elementary school level, (a) for schools without focus on science, there is an overall increase of about 7\% in science proficiency, with some intermediate fluctuations, and (b) for schools with focus on science, there is an overall increase of about 3% in science proficiency, also with some intermediate fluctuations. At the middle school level, (a) for schools without focus on science, there is a large decrease of 27% in science proficiency, with some intermediate fluctuations, and (b) for schools with focus on science, there is a sustained increase in science proficiency of about 7\%. At the high school level, (a) for schools without focus on science, there is a sustained increase in science proficiency of about 8%, and (b) for schools with focus on
science, there is an overall decrease of 3% in science proficiency, with an increase over the first three years (2004/05-2006/07) followed by a decrease at the end year (2007/08). As can be seen from Table 8, this decrease seems to come primarily from an unexpected decrease in science proficiency for high schools with focus on science at the end year (2007/08) for two ethnic groups - White and Other (different from White, African-American, Hispanic, and Asian).

By gender, there is an increase in science proficiency of about the same magnitude for both males and females over the four-years (2004/05-2007/08) for schools with focus on science at all school levels. For schools without focus on science, regardless of gender, there is a decrease in science proficiency at the middle school levels and an increase at the elementary and high school level. For both males and females, the largest increase in science proficiency over the four-years (2004/05-2007/08) is for the elementary schools with focus on science, whereas the largest decrease is for the middle schools without focus on science.

By ethnicity, the largest increase in science proficiency over the four years (2004/052007/08) is for African-American students in the high and elementary schools with focus on science followed (in this order) by Asian students in the elementary schools with focus on science and Hispanic students in the elementary schools with focus on science. Conversely, the largest decrease is for White students in the middle schools without focus on science and the ethnic group Other in the high and elementary schools with focus on science. Noteworthy is the sharp decrease in science proficiency for White students in the high schools with focus on science - from a strong increase over the first three years (2004/05-2006/07) to an overall decrease over the four-year period of time (2004/05-2007/08) due to a sharp decrease at the end year of this time period (2007/08).

For special education students, there is an overall increase in science proficiency for the elementary, middle, and high schools with focus on science across the four years (2004/052007/08). The largest decrease in science proficiency over this period of time is for the middle schools without focus on science.

For students with limited English proficiency (LEP), there is a sustained increase in science proficiency over the four years (2004/05-2007/08) for the elementary and middle schools with focus on science. For the high schools with focus on science, there is a shift from a slight increase over the first three years (2004/05-2006/07) to a slight decrease over the four-year period of time (2004/05-2007/08). There is an increase in science proficiency over the four years (2004/05-2007/08) for schools without focus on science at all school levels (elementary, middle, and high).

Schools by Direction of Change in Math and Science Proficiency

For math proficiency, the percentage of schools with an increase over the four-year period of time (2004/05-2007/08) is much higher than the percentage of schools with a decrease at all (elementary, middle, and high) school levels. For schools that fall into the "increase" category, the percentage of schools with MSP focus on math is much higher than the percentage of schools without MSP focus on math for the elementary schools and middle. At the high school level, the increase in math proficiency is at higher rate for schools without MSP focus on math compared to schools with MSP focus on math.

For science proficiency, the percentage of schools with an increase over the four-year period of time (2004/05-2007/08) is much higher than the percentage of schools with a decrease at all (elementary, middle, and high) school levels. For the schools that fall into the "increase" category, the percentage of schools with MSP focus on science is much higher than the percentage of schools without MSP focus on science for the elementary and middle schools, but at the high school level the schools without MSP focus on science increase in science proficiency at higher rate compared to schools with MSP focus on science.

Longitudinal Growth Trajectories in School Math and Science Proficiency

Mathematics. The results from the growth mixture modeling of changes in math proficiency over the four-year period of time (2004/05-2007/08) indicate that there are different numbers of latent classes and different trends of increase (or decrease) in math proficiency within these classes across different school levels (elementary, middle, and high). At the elementary school level, there is a single class of linear growth trajectories that indicate a sustained increase in math proficiency.

At the middle school level, there are two latent classes of nonlinear growth trajectories in math proficiency over the four-year period of time (2004/05-2007/08). The trends of changes in math proficiency delineated by the two classes of growth trajectories are different. Specifically, while the class consisting of the lower performing schools delineates a sustained increase in math proficiency, the better performing schools in the other class exhibits a quadratic trend of a slight initial increase followed by a slight decrease in math proficiency across the four years (2004/052007/08).

At the high school level, there are four latent classes of quadratic growth trajectories in math proficiency across the four years (2004/05-2007/08). Three latent classes contain schools with relatively stable performance and almost negligible change across the four years, but they also differ consistently in level of proficiency across the four years. A fourth latent class, that
contains the smallest percent of high schools, demonstrates a quadratic trend of initial increase (2004/05-2005/06) followed by a sharp decrease (2005/06-2007/08) in trajectories of math proficiency over the four-year period of time (2004/05-2007/08). As noted earlier, this latent class of unexpected decline in math proficiency consists of nine high schools with focus on math and they all come from a single MSP project.

The results from the growth analyses of math proficiency for the elementary, middle, and high schools also indicated that the elementary and middle schools with focus on math increase at higher rate in math proficiency compared to their counterparts without focus on math, but the rate of change in math proficiency for the high schools does not depend on whether the schools are with or without focus on math for the identified latent classes across the four-year period of time. Also, regardless of focus on math, schools with lower initial status (lower percent of students at or above proficient in math) tend to increase at a higher rate in math proficiency over the four-year period of time. From a different angle, based on chi-square tests for association, the dependence between membership to latent classes of growth trajectories in math and school focus on math (Yes/No) is statistically significant at the high school level (see Table 11).

Science. The results from the growth mixture modeling of changes in science proficiency over the four-year period of time (2004/05-2007/08) indicate that there are two latent classes of linear growth trajectories at all school levels (elementary, middle, and high). For the elementary schools, while the higher perfoming class exhibits a negligible increase in science proficiency, the lower performing class provides a more pronounced trend of sustained increase across the four years (2004/05-2007/08). For the middle schools, the lower performing class provides a trend of sustained increase, whereas the higher performing class provides a trend of sustained decrease, across the four years (2004/05-2007/08). For the high schools, one of the two classes performs consistently better than the other class, but for both classes there is a trend of no change in science proficiency across the four years (2004/05-2007/08).

The results from the growth analyses of science proficiency also indicate that the schools with focus on science tend to have lower initial status (in year 2004/05) in science proficiency at all school levels (elementary, middle, and high) compared to schools without focus on science. On the other hand, (a) there is no significant difference in rate of growth between schools with and without focus on science at the elementary school level, (b) middle schools with focus on science increase at higher rate compared to middle schools without focus on science, and (c) high schools without focus on science start higher (in 2004/05) and tend to increase at higher rate compared to high schools with focus on science across the four-year period of time (2004/05-

2007/08). From a different angle, based on chi-square tests for association, the dependence between membership to latent classes of growth trajectories in science and school focus on science (Yes/No) is statistically significant at the elementary, middle, and high school levels (see Table 12).

Relationship Between Targeted Teacher Participation in MSP-related Activities and Student

 Proficiency in Math and ScienceThe Pearson product-moment correlation coefficients for the relationship between targeted teacher participation in MSP-related activities and student proficiency in math and science show that, for both math and science, this relationship is positive, yet relatively weak at the elementary school level, somewhat stronger at the high school level, but not manifested at the middle school level (see Table 13). One can expect that this relationship could be even more pronounced at the high school level if there was not a relatively large decrease in math (or science) proficiency at the end year (2007/08) for high schools with focus on math (or science).

Relationship Between Student Proficiency in Math (or Science) and the Proportion of Students Assessed in Math (or Science) Who Successfully Completed a Math (or Science) Course at the High School Level

MSP-MIS data for examination of the targeted relationship is available only at the high school level for math and science. For mathematics, this relationship is demonstrated for high school students who successfully completed a regular math course in year 2004/05, an advanced math course in year 2005/06, or a regular course in math in year 2007/08. The relationship between the proficiency in math for high school students and their success in regular math courses (manifested in two years) is more clearly pronounced compared to advanced courses, where this relationship is manifested only one year over the four-year period of time (2004/052007/08).

For science, there is a stable relationship between proficiency in science for high school students and their success in completing a course in Biology. Although less pronounced, a similar trend emerges for successful completion of a course in Chemistry, Integrated Science, and Physics, yet not quite in Earth and Science. Overall, there is a promising relationship between proficiency in science and successful completion of a course in science for high school students over the four-year period of time (2004/05-2007/08).

Limitations and Upcoming Analyses

The results in this study must be interpreted with understanding of limitations that stem from restricted MIS data with the Annual K-12 District Survey. One potential limitation stems from the lack of MIS data that can be used to equate school proficiency measures in math and science across states. It should be noted, however, that mapping state performance standards on to a common scale (e.g., using NAEP data) is a difficult task still challenging the research on large-scale performance analyses (e.g., Braun \& Qian, 2007; McLaughlin \& Bandeira de Mello, 2003). The purpose of such equating is to take into account differences (in content and passing standards) among state assessments in math and science for the comparison of states on a common scale. Such comparisons, however, are not targeted in this study. Instead, the focus here is on changes and growth trajectories in student math and science proficiency and its relationship with school's targeted teacher participation in MSP-related activities.

One limitation, for example, is the lack of matching data from "control" schools (not involved in MSP) to evaluate the degree to which the changes in students' proficiency in math and science can be attributed to school participation in MSP. That is why this study does not engage in testing hypothesis about the degree to which the delineated trends in math and science performance of MSP-related schools are different from trends that may exist in non-MSP related schools. However, while the preferred design of random assignment to groups is not applicable in this study of MSP-MIS data, we can argue that the employed design of comparing schools with and without MSP focus on math (or science) is a sound alternative (and probably better that any other two-group design) because it examines the effect of "MSP focus" within the pool of MSP schools.

Additional evidence about explanatory effects of MSP-related activities in schools on student proficiency in math and science is sought through the fourth research question by analyzing the correlation between the targeted teacher participation in MSP-related activities and student proficiency. Triangulations with findings in other MSP-PE substudies that control for MSP participation of schools (e.g., Wong \& Socha, 2008) may provide more evidence on the role of MSP factors in the math and science proficiency of MSP-related schools.

Further, to maintain statistical correctness and validity of the results in this study, the aggregation of schools (e.g., by elementary, middle, and high school level) was done NOT by averaging the proportions of students at or above proficient across schools, but by aggregating the number of students assessed and the number of those who "pass" (at or above proficient) thus producing a "clean" measure of student proficiency at the aggregated school level. Likewise, the
measure of school proficiency by direction of change (decrease, no change, increase) in math or science proficiency, used with RQ2, is based on testing for statistical significance of the change for each school, and not on aggregated proportions across schools. When averaging of proportions was necessary with the growth modeling in RQ3, it was done after adjusting the proportions for school size and variability in math and science proficiency by using the arcsinroot transformation of the proportions.

Additional analyses over following years that can counteract the limitations with this study are next steps in the MSP-PE agenda. Such analyses can further expand our understanding of (a) the nature of MSP characteristics of schools that fall in different latent classes of longitudinal growth trajectories for math (or science) proficiency, (b) whether certain unexpected changes, such as the decrease in math (or science) proficiency at the end year (2007/08) for high schools with focus on math (or science), tend to persist or simply represent intermediate fluctuations due to latent effects in MSP practices for some limited groups of schools (e.g., the case of nine high schools with focus on math in a single MSP project that exhibit an unexpected decline in math proficiency at the end year, 2007/08).

In conclusion, despite limitations in scope and depth of the analysis in this study, due primarily to data restrictions with the MIS Annual K-12 District Survey, the results indicate promising trends and relationships between student proficiency in mathematics and science and MSP-related variables.

References

Braun, H., \& Qian, J. (2007). An enhanced method for mapping state standards onto the NAEP scale. In N. J. Dorans, M. Pommerich, \& W.P. Holland (Eds.), Linking and aligning scores and scales. New York: Springer.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum.
Dimitrov, D. M. (2008). Initial trends in MSP-related changes in student achievement with MIS data. Peabody Journal of Education, 83(4), 637-653.
Dimitrov, D.M. (2009a). Intermediate trends in MSP-related changes in student math and science partnership-related changes in student achievement with management system data. The Journal of Educational Research \& Policy Studies, 9(2), 97-138.
Dimitrov, D. M. (2009b). Longitudinal Trends in Math and Science Partnership-Related Changes in Student Achievement With Management Information System Data. Washington, DC: National Science Foundation [Math and Science Partnership Programs-Technical Report].
National Science Foundation. (2006). NSF's math and science partnerships make the grade. Press Release 06-029, Arlington, VA.
National Science Foundation. (2007). NSF's math and science partnerships demonstrate continued increases in student proficiency. Press Release 07-005, Arlington, VA.
National Science Foundation. (2007). Student results show benefits of math and science partnerships. Press Release 07-080, Arlington, VA.
McLaughlin, D., \& Bandeira de Mello, V. (2003). Comparing state reading and math performance standards using NAEP. Paper presented at the National Conference on Large-Scale Assessment, San Antonio, CA.
Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.). Handbook of Quantitative Methodology for the Social Sciences. Newbury Park, CA: Sage Publications.
Muthén, L.K., \& Muthén, B.O. (1998-2007). Mplus User’s Guide. Los Angeles, CA: Muthén \& Muthén.
Silverstein, Bell, Frechtling, \& Miyaoka (August, 2005). MSP-MIS Summary Data for Comprehensive and Targeted Partnership Projects: 2002-03 and 2003-04 School Years. WESTAT 1650 Research Boulevard Rockville, Maryland 20850.
Snedecor, G.W., \& Cochran, W. G. (1989). Statistical methods (8th ed.). Ames, IA: Blackwell Publishing.
Sokal, R.R., \& Rohlf, F. J. (1995). Biometry: The principles and practice of statistics in biological research (3rd ed.). W.H. Freeman, New York.
Stevens, J. P. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Lawrence Erlbaum.
Wong K. \& Socha T. (2008). A pilot analysis comparing MSP and non-MSP schools. Peabody Journal of Education, 83(4), 654-673.
Zar, J. H. (1999). Biostatistical analysis (4th ed.). Prentice Hall, Upper Saddle River, NJ.

APPENDIX A

Number of Students Assessed (N) on a State Proficiency Test in Math (or Science) and Number of Students At or Above Proficient (P) for Schools with MSP-MIS Data on Student Achievement for Any of the Five Years 2003/04, 2004/05, 2005/06, 2006/07, and 2007/08)

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
All students						
2003/04	$\begin{gathered} \hline \mathrm{N}=52926 \\ \mathrm{P}=25119 \\ 317 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=71380 \\ \mathrm{P}=31599 \\ 178 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=78849 \\ \mathrm{P}=37188 \\ 176 \text { Schools } \end{gathered}$	$\begin{aligned} \mathrm{N} & =10838 \\ \mathrm{P} & =3511 \end{aligned}$ 134 Schools	$\begin{aligned} & \hline \mathrm{N}=14458 \\ & \mathrm{P}=6389 \\ & 66 \text { Schools } \end{aligned}$	$\begin{gathered} \hline \mathrm{N}=39647 \\ \mathrm{P}=22628 \\ 107 \text { Schools } \\ \hline \end{gathered}$
2004/05	$\begin{gathered} \mathrm{N}=91338 \\ \mathrm{P}=57685 \\ 560 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=135845 \\ \mathrm{P}=69984 \\ 289 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=110004 \\ \mathrm{P}=52670 \\ 264 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=16876 \\ \mathrm{P}=8073 \\ 197 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=46037 \\ \mathrm{P}=28833 \\ \text { 151 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=65675 \\ \mathrm{P}=32939 \\ \text { 181 Schools } \\ \hline \end{gathered}$
2005/06	$\begin{aligned} & \hline \mathrm{N}=158044 \\ & \mathrm{P}=105408 \\ & 733 \text { Schools } \end{aligned}$	$\begin{gathered} \mathrm{N}=260274 \\ \mathrm{P}=140065 \\ 457 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=140575 \\ \mathrm{P}=64273 \\ 330 \text { Schools } \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=32817 \\ \mathrm{P}=20187 \\ \text { 301 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=78812 \\ \mathrm{P}=43288 \\ 235 \text { Schools } \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=78994 \\ \mathrm{P}=41388 \\ 227 \text { Schools } \end{gathered}$
2006/07	$\begin{gathered} \mathrm{N}=199853 \\ \mathrm{P}=139222 \\ 801 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=276193 \\ \mathrm{P}=165903 \\ \text { 481 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=134755 \\ \mathrm{P}=69623 \\ 343 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=57647 \\ \mathrm{P}=34642 \\ \text { 450 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=90216 \\ \mathrm{P}=53558 \\ \text { 302 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=84687 \\ \mathrm{P}=45290 \\ 268 \text { Schools } \\ \hline \end{gathered}$
2007/08	$\begin{gathered} \hline \mathrm{N}=201500 \\ \mathrm{P}=128130 \\ 828 \text { Schools } \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=236747 \\ \mathrm{P}=139282 \\ 458 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=115496 \\ \mathrm{P}=55123 \\ 344 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=63427 \\ \mathrm{P}=32503 \\ 516 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=82276 \\ \mathrm{P}=42659 \\ 286 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=76211 \\ \mathrm{P}=36518 \\ 259 \text { Schools } \\ \hline \end{gathered}$

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
Males						
2003/04	$\begin{array}{r} \mathrm{N}=26746 \\ \mathrm{P}=12507 \\ 317 \text { Schools } \end{array}$	$\begin{gathered} \mathrm{N}=36017 \\ \mathrm{P}=15708 \\ 178 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=39389 \\ \mathrm{P}=18795 \\ \text { 172 Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=5300 \\ \mathrm{P}=1684 \\ 130 \text { Schools } \end{array}$	$\begin{aligned} & \mathrm{N}=7344 \\ & \mathrm{P}=3285 \end{aligned}$ 66 Schools	$\begin{array}{r} \mathrm{N}=19749 \\ \mathrm{P}=11574 \\ 104 \text { Schools } \end{array}$
2004/05	$\begin{aligned} & \hline N=41009 \\ & P=25177 \end{aligned}$ 463 Schools	$\begin{gathered} \hline \mathrm{N}=51393 \\ \mathrm{P}=25013 \\ 230 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=50546 \\ \mathrm{P}=23689 \\ 220 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=7440 \\ & \mathrm{P}=3181 \end{aligned}$ $186 \text { Schools }$	$\begin{gathered} \mathrm{N}=12137 \\ \mathrm{P}=6561 \\ \text { 109 Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=29416 \\ \mathrm{P}=14991 \\ 144 \text { Schools } \end{array}$
2005/06	$\begin{array}{r} \mathrm{N}=75687 \\ \mathrm{P}=48790 \\ \text { 673 Schools } \end{array}$	$\begin{gathered} \mathrm{N}=115441 \\ \mathrm{P}=63179 \\ 401 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=59071 \\ \mathrm{P}=30344 \\ 287 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=15863 \\ \mathrm{P}=9733 \\ \text { 278 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=37676 \\ \mathrm{P}=21320 \\ 215 \text { Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=36469 \\ \mathrm{P}=20443 \\ 201 \text { Schools } \end{array}$
2006/07	$\begin{gathered} \mathrm{N}=94847 \\ \mathrm{P}=64876 \\ 726 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=123804 \\ \mathrm{P}=71874 \\ 423 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=60130 \\ \mathrm{P}=32362 \\ 288 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=28270 \\ & \mathrm{P}=16746 \end{aligned}$ 424 Schools	$\begin{gathered} \mathrm{N}=42652 \\ \mathrm{P}=24607 \\ 275 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=36806 \\ \mathrm{P}=21041 \\ 217 \text { Schools } \end{gathered}$
2007/08	$\begin{aligned} & \mathrm{N}=99773 \\ & \mathrm{P}=62571 \end{aligned}$ 768 Schools	$\begin{gathered} \mathrm{N}=111662 \\ \mathrm{P}=64383 \\ 406 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=48541 \\ & \mathrm{P}=23268 \end{aligned}$ 285 Schools	$\begin{aligned} & \mathrm{N}=29994 \\ & \mathrm{P}=14709 \end{aligned}$ 457 Schools	$\begin{gathered} \mathrm{N}=37088 \\ \mathrm{P}=18637 \\ 240 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=30710 \\ & \mathrm{P}=15390 \end{aligned}$ 208 Schools

APPENDIX A (continued)

Female						
2003/04	$\begin{aligned} & \mathrm{N}=25856 \\ & \mathrm{P}=12479 \\ & \text { 317 Schools } \end{aligned}$	$\begin{aligned} & \hline N=35332 \\ & P=15873 \\ & 178 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=39074 \\ & \mathrm{P}=18144 \\ & \text { 172 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N=5294 \\ & P=1718 \\ & \text { 131 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=7101 \\ & \mathrm{P}=3098 \\ & 66 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=19740 \\ & \mathrm{P}=10950 \\ & \text { 104 Schools } \\ & \hline \end{aligned}$
2004/05	$\begin{aligned} & \mathrm{N}=39214 \\ & \mathrm{P}=24652 \\ & \text { 463 Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=50240 \\ & \mathrm{P}=24796 \\ & \text { 230 Schools } \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=50023 \\ & \mathrm{P}=23274 \\ & \text { 220 Schools } \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=7231 \\ & \mathrm{P}=3057 \\ & \text { 186 Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=11625 \\ & \mathrm{P}=6163 \\ & 109 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=29182 \\ & \mathrm{P}=14139 \\ & 143 \text { Schools } \end{aligned}$
2005/06	$\begin{aligned} & \mathrm{N}=72753 \\ & \mathrm{P}=47681 \\ & 673 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=112590 \\ & \mathrm{P}=63790 \\ & \text { 401 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=59570 \\ & \mathrm{P}=30326 \\ & \text { 289 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=15437 \\ & \mathrm{P}=9666 \\ & 278 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=37094 \\ & \mathrm{P}=20606 \\ & 215 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=37194 \\ & \mathrm{P}=19382 \\ & 201 \text { Schools } \end{aligned}$
2006/07	$\begin{aligned} & \hline \mathrm{N}=90952 \\ & \mathrm{P}=63692 \\ & 727 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N=119357 \\ & P=71206 \\ & \text { 423 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=60782 \\ & \mathrm{P}=32469 \\ & \text { 289 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N=27662 \\ & P=16490 \\ & \text { 424 Schools } \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=41564 \\ & \mathrm{P}=23913 \\ & 275 \text { Schools } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{N}=37536 \\ \mathrm{P}=20785 \\ 218 \text { Schools } \\ \hline \end{array}$
2007/08	$\begin{aligned} & \mathrm{N}=95542 \\ & \mathrm{P}=61205 \\ & 767 \text { Schools } \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=106955 \\ & \mathrm{P}=62901 \\ & \text { 407 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=48937 \\ & \mathrm{P}=23566 \\ & \text { 286 Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=29092 \\ & \mathrm{P}=14720 \\ & \text { 456 Schools } \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=36072 \\ & \mathrm{P}=17773 \\ & 241 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=31702 \\ & \mathrm{P}=15838 \\ & 208 \text { Schools } \end{aligned}$
	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
White						
2003/04	$\begin{gathered} \mathrm{N}=12329 \\ \mathrm{P}=9318 \end{gathered}$ 182 Schools	$\begin{aligned} & \mathrm{N}=22627 \\ & \mathrm{P}=15074 \\ & 118 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=17620 \\ & \mathrm{P}=11432 \\ & 121 \text { Schools } \end{aligned}$	$\begin{aligned} \hline \mathrm{N}=4475 \\ \mathrm{P}=1997 \\ 99 \text { Schools } \end{aligned}$	$\begin{aligned} \mathrm{N}=6858 \\ \mathrm{P}=4160 \\ 52 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=11941 \\ & \mathrm{P}=8661 \\ & 9 \text { Schools } \end{aligned}$
2004/05	$\begin{aligned} & \mathrm{N}=26969 \\ & \mathrm{P}=21435 \end{aligned}$ $347 \text { Schools }$	$\begin{aligned} & \mathrm{N}=41589 \\ & \mathrm{P}=29479 \\ & 196 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=27289 \\ & \mathrm{P}=18638 \\ & 188 \text { Schools } \end{aligned}$	$\begin{aligned} & N=5965 \\ & P=3598 \end{aligned}$ 162 Schools	$\begin{gathered} \mathrm{N}=13092 \\ \mathrm{P}=9121 \end{gathered}$ 107 Schools	$\begin{aligned} & \mathrm{N}=17902 \\ & \mathrm{P}=13619 \end{aligned}$ 134 Schools
2005/06	$\begin{array}{r} \mathrm{N}=62046 \\ \mathrm{P}=46353 \\ 534 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N}=94398 \\ & \mathrm{P}=65234 \\ & 334 \text { Schools } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=32499 \\ & \mathrm{P}=22149 \\ & 204 \text { Schools } \end{aligned}$	$\begin{gathered} \mathrm{N}=10136 \\ \mathrm{P}=7187 \\ 217 \mathrm{Schools} \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{l} \mathrm{N}=21020 \\ \mathrm{P}=15430 \\ 178 \text { Schools } \end{array} \end{aligned}$	$\begin{gathered} \mathrm{N}=18731 \\ \mathrm{P}=14511 \\ 143 \text { Schools } \\ \hline \end{gathered}$
2006/07	$\begin{gathered} \mathrm{N}=77724 \\ \mathrm{P}=61898 \\ 587 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=110258 \\ \mathrm{P}=79201 \\ 366 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=38640 \\ & \mathrm{P}=27978 \\ & 238 \text { Schools } \end{aligned}$	$\begin{aligned} \mathrm{N}=19938 \\ \mathrm{P}=15365 \\ 270 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=31841 \\ \mathrm{P}=22639 \\ 210 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N}=22255 \\ & \mathrm{P}=17217 \end{aligned}$ $165 \text { Schools }$
2007/08	$\begin{aligned} & \mathrm{N}=82809 \\ & \mathrm{P}=56893 \end{aligned}$ $620 \text { Schools }$	$\begin{aligned} & \mathrm{N}=100487 \\ & \mathrm{P}=69792 \\ & 336 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=25837 \\ \mathrm{P}=16311 \\ 244 \text { Schools } \end{array}$	$\begin{array}{r} \mathrm{N}=22636 \\ \mathrm{p}=11438 \\ 322 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N}=29168 \\ & \mathrm{P}=16324 \end{aligned}$ 188 Schools	$\begin{aligned} & \mathrm{N}=21632 \\ & \mathrm{P}=14716 \end{aligned}$ 163 Schools
African American						
2003/04	$\begin{aligned} & \mathrm{N}=6571 \\ & \mathrm{P}=2357 \end{aligned}$ 176 Schools	$\begin{aligned} \mathrm{N}=10001 \\ \mathrm{P}=2612 \\ 107 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=6170 \\ & \mathrm{P}=2106 \end{aligned}$ $105 \text { Schools }$	$\begin{gathered} \mathrm{N}=1290 \\ \mathrm{P}=229 \end{gathered}$ 87 Schools	$\begin{gathered} \mathrm{N}=3634 \\ \mathrm{P}=618 \end{gathered}$ 54 Schools	$\begin{aligned} & \mathrm{N}=4952 \\ & \mathrm{P}=2357 \end{aligned}$ 71 Schools
2004/05	$\begin{gathered} \mathrm{N}=13421 \\ \mathrm{P}=6747 \\ 278 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=15595 \\ \mathrm{P}=5733 \\ \text { 161 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=10455 \\ \mathrm{P}=3483 \\ 152 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=2178 \\ & \mathrm{P}=722 \\ & \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=5287 \\ \mathrm{P}=1626 \\ 72 \text { Schools } \end{array}$	$\begin{array}{r} \mathrm{N}=8036 \\ \mathrm{P}=3074 \\ 105 \text { Schools } \end{array}$
2005/06	$\begin{array}{r} \mathrm{N}=37561 \\ \mathrm{P}=23972 \\ 452 \text { Schools } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{N}=39987 \\ \mathrm{P}=17636 \\ 277 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N}=12239 \\ & \mathrm{P}=5283 \\ & 159 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=12478 \\ \mathrm{P}=8752 \\ \text { 174 Schools } \\ \hline \end{array}$	$\begin{gathered} \mathrm{N}=19237 \\ \mathrm{P}=7915 \\ \text { 132 Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=9567 \\ \mathrm{P}=4410 \\ \text { 103 Schools } \end{array}$
2006/07	$\begin{array}{r} \mathrm{N}=53619 \\ \mathrm{P}=34832 \\ 540 \text { Schools } \end{array}$	$\begin{array}{r} \mathrm{N}=47079 \\ \mathrm{P}=23239 \\ 312 \text { Schools } \end{array}$	$\begin{array}{r} \mathrm{N}=17284 \\ \mathrm{P}=8939 \\ \text { 197 Schools } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N}=21603 \\ & \mathrm{P}=1 \end{aligned}$ $253 \text { Schools }$	$\begin{aligned} & \mathrm{N}=23116 \\ & \mathrm{P}=10189 \end{aligned}$ $169 \text { Schools }$	$\begin{gathered} \hline \mathrm{N}=12409 \\ \mathrm{P}=6355 \end{gathered}$ 142 Schools
2007/08	$\begin{aligned} & \hline \mathrm{N}=53734 \\ & \mathrm{P}=31778 \end{aligned}$ 566 Schools	$\begin{array}{r} \mathrm{N}=45941 \\ \mathrm{P}=22569 \\ \text { 297 Schools } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{N}=18297 \\ \mathrm{P}=8872 \\ 232 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{N}=22837 \\ & \mathrm{P}=12215 \end{aligned}$ 340 Schools	$\begin{aligned} & \hline \mathrm{N}=24166 \\ & \mathrm{P}=10580 \end{aligned}$ 186 Schools	$\begin{gathered} \hline \mathrm{N}=14540 \\ \mathrm{P}=7754 \end{gathered}$ 173 Schools

Hispanic/Latino						
2003/04	$\begin{aligned} \mathrm{N}=30254 \\ \mathrm{P}=11373 \\ \text { 271 Schools } \end{aligned}$	$\begin{aligned} \mathrm{N}=29013 \\ \mathrm{P}=8186 \\ 155 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=48342 \\ \mathrm{P}=20143 \\ 134 \text { Schools } \\ \hline \end{array}$	$\begin{gathered} \mathrm{N}=3763 \\ \mathrm{P}=800 \end{gathered}$ 117 Schools	$\begin{gathered} \hline \mathrm{N}=1846 \\ \mathrm{P}=726 \end{gathered}$ 54 Schools	$\begin{gathered} \mathrm{N}=18513 \\ \mathrm{P}=9023 \end{gathered}$ 83 Schools
2004/05	$\begin{aligned} & \mathrm{N}=37458 \\ & \mathrm{P}=20189 \\ & 360 \text { Schools } \end{aligned}$	$\begin{aligned} \mathrm{N}=41270 \\ \mathrm{P}=12143 \\ 227 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=59203 \\ \mathrm{P}=22808 \\ 193 \text { Schools } \end{array}$	$\begin{aligned} & \mathrm{N}=5634 \\ & \mathrm{P}=1626 \end{aligned}$ 133 Schools	$\begin{aligned} & \mathrm{N}=4925 \\ & \mathrm{P}=1923 \\ & 109 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=29152 \\ & \mathrm{P}=10373 \\ & 124 \text { Schools } \end{aligned}$
2005/06	$\begin{aligned} & \mathrm{N}=40411 \\ & \mathrm{P}=20968 \end{aligned}$ $475 \text { Schools }$	$\begin{aligned} & \mathrm{N}=72099 \\ & \mathrm{P}=29034 \end{aligned}$ $342 \text { Schools }$	$\begin{aligned} & \hline \mathrm{N}=58645 \\ & \mathrm{P}=22413 \end{aligned}$ 217 Schools	$\begin{aligned} \mathrm{N}=6147 \\ \mathrm{P}=1899 \\ 187 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=19087 \\ \mathrm{P}=8040 \\ 187 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} \mathrm{N}=29736 \\ \mathrm{P}=10701 \\ 147 \text { Schools } \end{aligned}$
2006/07	$\begin{aligned} \mathrm{N}=44159 \\ \mathrm{P}=25077 \\ 574 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=71342 \\ & \mathrm{P}=31281 \\ & 336 \text { Schools } \end{aligned}$	$\begin{aligned} \mathrm{N} & =61011 \\ \mathrm{P} & =25054 \\ 233 & \text { Schools } \end{aligned}$	$\begin{gathered} \mathrm{N}=11389 \\ \mathrm{P}=5831 \\ 333 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=23366 \\ & \mathrm{P}=11815 \\ & 231 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=36393 \\ & \mathrm{P}=15588 \\ & 187 \text { Schools } \end{aligned}$
2007/08	$\begin{aligned} & \mathrm{N}=44496 \\ & \mathrm{P}=25696 \\ & 586 \text { Schools } \end{aligned}$	$\begin{aligned} \mathrm{N}=50484 \\ \mathrm{P}=19329 \\ 288 \text { Schools } \\ \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=34941 \\ \mathrm{P}=9705 \\ 215 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=11765 \\ \mathrm{P}=4846 \end{gathered}$ 412 Schools	$\begin{aligned} \mathrm{N} & =15231 \\ \mathrm{P} & =6126 \\ 206 & \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=23023 \\ & \mathrm{P}=6627 \\ & 176 \text { Schools } \end{aligned}$

APPENDIX A (continued)

Asian						
2003/04	$\begin{aligned} & \mathrm{N}=394 \\ & \mathrm{P}=288 \end{aligned}$ 97 Schools	$\begin{aligned} & \mathrm{N}=4665 \\ & \mathrm{P}=3614 \end{aligned}$ 82 Schools	$\begin{aligned} & \hline \mathrm{N}=2969 \\ & \mathrm{P}=1885 \end{aligned}$ 75 Schools	$\begin{aligned} & \hline \mathrm{N}=248 \\ & \mathrm{P}=119 \end{aligned}$ 72 Schools	$\begin{aligned} & \hline \mathrm{N}=313 \\ & \mathrm{P}=148 \end{aligned}$ 38 Schools	$\begin{aligned} & \hline N=1854 \\ & P=1457 \end{aligned}$ 56 Schools
2004/05	$\begin{aligned} & \mathrm{N}=932 \\ & \mathrm{P}=735 \end{aligned}$ 183 Schools	$\begin{aligned} & \mathrm{N}=5700 \\ & \mathrm{P}=4432 \end{aligned}$ 130 Schools	$\begin{aligned} & \hline \mathrm{N}=2856 \\ & \mathrm{P}=1576 \end{aligned}$ 119 Schools	$\begin{aligned} & \hline \mathrm{N}=242 \\ & \mathrm{P}=155 \end{aligned}$ 65 Schools	$\begin{aligned} & \mathrm{N}=478 \\ & \mathrm{P}=286 \end{aligned}$ 65 Schools	$\mathrm{N}=2530$ $\mathrm{P}=1732$ 80 Schools
2005/06	$\begin{aligned} & \mathrm{N}=1654 \\ & \mathrm{P}=1322 \end{aligned}$ 271 Schools	$\mathrm{N}=9210$ $\mathrm{P}=7315$ 225 Schools		$\begin{gathered} \mathrm{N}=469 \\ \mathrm{P}=345 \end{gathered}$ 100 Schools	$\begin{aligned} & \mathrm{N}=2696 \\ & \mathrm{P}=2114 \end{aligned}$ 110 Schools	$\begin{aligned} & \mathrm{N}=2619 \\ & \mathrm{P}=1898 \end{aligned}$ 83 Schools
2006/07	$\begin{aligned} \hline \mathrm{N}=2308 \\ \mathrm{P}=1925 \\ 305 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=9392 \\ \mathrm{P}=7557 \\ 213 \text { Schools } \end{array}$	$\begin{array}{r} \hline \mathrm{N}=3291 \\ \mathrm{P}=2190 \\ 135 \text { Schools } \end{array}$	$\begin{array}{r} \mathrm{N}=782 \\ \mathrm{P}=601 \\ 139 \text { Schools } \end{array}$	$\begin{array}{r} \quad \begin{array}{l} \mathrm{N}=2695 \\ \mathrm{P}=2140 \\ 119 \text { Schools } \end{array} \end{array}$	$\begin{aligned} & \mathrm{N}=1216 \\ & \mathrm{P}=650 \end{aligned}$ 84 Schools
2007/08	$\begin{aligned} & \mathrm{N}=2850 \\ & \mathrm{P}=2079 \end{aligned}$ 359 Schools	$\begin{aligned} & \mathrm{N}=10121 \\ & \mathrm{P}=8242 \\ & 237 \text { Schools } \\ & \hline \end{aligned}$	$\begin{array}{r} \hline \mathrm{N}=3904 \\ \mathrm{P}=2405 \\ 176 \text { Schools } \\ \hline \end{array}$	$\begin{gathered} \mathrm{N}=1001 \\ \mathrm{P}=617 \end{gathered}$ 224 Schools	$\begin{aligned} & \mathrm{N}=2919 \\ & \mathrm{P}=2312 \end{aligned}$ 157 Schools	$\begin{array}{r} \mathrm{N}=2949 \\ \mathrm{P}=2195 \\ 135 \text { Schools } \end{array}$

Others						
2003/04	$\begin{aligned} & \hline \mathrm{N}=3378 \\ & \mathrm{P}=1783 \end{aligned}$ $202 \text { Schools }$	$\begin{aligned} & \mathrm{N}=5074 \\ & \mathrm{P}=2113 \end{aligned}$ 121 Schools	$\begin{aligned} & \mathrm{N}=3748 \\ & \mathrm{P}=1602 \end{aligned}$ 118 Schools	$\begin{gathered} \mathrm{N}=1062 \\ \mathrm{P}=366 \\ 103 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=1807 \\ \mathrm{P}=737 \end{gathered}$ $58 \text { Schools }$	$\begin{aligned} & \mathrm{N}=2387 \\ & \mathrm{P}=1130 \end{aligned}$ $85 \text { Schools }$
2004/05	$\begin{array}{r} \mathrm{N}=4787 \\ \mathrm{P}=3754 \\ 192 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N}=21944 \\ & \mathrm{P}=14247 \end{aligned}$ 147 Schools	$\begin{aligned} & \mathrm{N}=5049 \\ & \mathrm{P}=4034 \end{aligned}$ $117 \text { Schools }$	$\begin{aligned} & \mathrm{N}=1892 \\ & \mathrm{P}=1644 \end{aligned}$ 51 Schools	$\begin{aligned} \mathrm{N}=19043 \\ \mathrm{P}=14463 \\ 75 \text { Schools } \\ \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=4401 \\ & \mathrm{P}=2724 \end{aligned}$ 73 Schools
2005/06	$\begin{array}{r} \mathrm{N}=4451 \\ \mathrm{P}=3000 \\ 363 \text { Schools } \\ \hline \end{array}$	$\begin{array}{r} \mathrm{N}=16309 \\ \mathrm{P}=11022 \\ 244 \text { Schools } \\ \hline \end{array}$	$\begin{gathered} \mathrm{N}=11030 \\ \mathrm{P}=7785 \\ 138 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=1235 \\ \mathrm{P}=970 \\ 104 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=11937 \\ & \mathrm{P}=8018 \\ & 114 \text { Schools } \end{aligned}$	$\begin{aligned} & \mathrm{N}=8839 \\ & \mathrm{P}=5765 \\ & 104 \text { Schools } \end{aligned}$
2006/07	$\begin{aligned} & \mathrm{N}=6273 \\ & \mathrm{P}=4194 \end{aligned}$ $436 \text { Schools }$	$\begin{aligned} & \mathrm{N}=10201 \\ & \mathrm{P}=4769 \\ & 267 \text { Schools } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=1894 \\ \mathrm{P}=746 \\ 129 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=1156 \\ \mathrm{P}=792 \\ 163 \text { Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=2611 \\ \mathrm{P}=1605 \\ \text { 114 Schools } \end{array}$	$\begin{aligned} & \mathrm{N}=480 \\ & \mathrm{P}=228 \end{aligned}$ 73 Schools
2007/08	$\begin{array}{r} \mathrm{N}=7223 \\ \mathrm{P}=4358 \\ 532 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} \mathrm{N}=7361 \\ \mathrm{P}=4023 \\ 262 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=2405 \\ \mathrm{P}=1010 \\ 172 \text { Schools } \end{array}$	$\begin{aligned} & \mathrm{N}=1868 \\ & \mathrm{P}=922 \\ & 163 \text { Schools } \end{aligned}$	$\begin{array}{r} \mathrm{N}=2883 \\ \mathrm{P}=1588 \\ 167 \text { Schools } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N}=1137 \\ & \mathrm{P}=386 \\ & 128 \text { Schools } \end{aligned}$

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
Special Education Students						
2003/04	$\begin{array}{r} \mathrm{N}=4719 \\ \mathrm{P}=1448 \\ \text { 263 Schools } \end{array}$	$\begin{gathered} \begin{array}{c} \mathrm{N}=6779 \\ \mathrm{P}=1181 \\ \text { 153 Schools } \end{array} \end{gathered}$	$\begin{gathered} \mathrm{N}=5516 \\ \mathrm{P}=936 \\ \text { 133 Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=980 \\ \mathrm{P}=157 \\ \text { 94 Schools } \end{array}$	$\begin{gathered} \mathrm{N}=1763 \\ \mathrm{P}=341 \\ 57 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=2181 \\ & \mathrm{P}=599 \\ & 76 \text { Schools } \end{aligned}$
2004/05	$\begin{array}{r} \mathrm{N}=8140 \\ \mathrm{P}=3059 \\ 392 \text { Schools } \end{array}$	$\begin{gathered} \mathrm{N}=10109 \\ \mathrm{P}=2032 \\ \text { 204 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=7062 \\ \mathrm{P}=1240 \\ \text { 184 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=1392 \\ \mathrm{P}=411 \\ 130 \text { Schools } \end{gathered}$	$\begin{aligned} \mathrm{N} & =3033 \\ \mathrm{P} & =735 \\ 98 & \text { Schools } \end{aligned}$	$\begin{gathered} \mathrm{N}=4236 \\ \mathrm{P}=917 \\ 120 \text { Schools } \\ \hline \end{gathered}$
2005/06	$\begin{gathered} \hline \mathrm{N}=15748 \\ \mathrm{P}=6549 \\ \text { 599 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=17598 \\ \mathrm{P}=3761 \\ \text { 322 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=6517 \\ \mathrm{P}=1391 \\ \text { 189 Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=3044 \\ \mathrm{P}=1554 \\ 211 \text { Schools } \\ \hline \end{array}$	$\begin{gathered} \mathrm{N}=6051 \\ \mathrm{P}=1459 \\ \text { 174 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=4243 \\ \mathrm{P}=986 \\ \text { 131 Schools } \\ \hline \end{gathered}$
2006/07	$\begin{gathered} \hline \mathrm{N}=18005 \\ \mathrm{P}=7719 \\ 618 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=23588 \\ \mathrm{P}=6006 \\ 366 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=9296 \\ \mathrm{P}=1932 \\ \text { 238 Schools } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{N}=4394 \\ \mathrm{P}=1885 \\ \text { 306 Schools } \end{array}$	$\begin{gathered} \mathrm{N}=5766 \\ \mathrm{P}=1676 \\ \text { 193 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=5038 \\ \mathrm{P}=1313 \\ 166 \text { Schools } \\ \hline \end{gathered}$
2007/08	$\begin{aligned} & \mathrm{N}=13209 \\ & \mathrm{P}=5008 \\ & 493 \text { Schools } \end{aligned}$		$\begin{gathered} \mathrm{N}=10241 \\ \mathrm{P}=2076 \\ 215 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=1737 \\ \mathrm{P}=450 \\ \text { 184 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=3314 \\ \mathrm{P}=781 \\ \text { 117 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=5306 \\ \mathrm{P}=1422 \\ 137 \text { Schools } \\ \hline \end{gathered}$

APPENDIX A (continued)

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
Limited English Proficiency Students						
2003/04	$\begin{gathered} \mathrm{N}=21616 \\ \mathrm{P}=7232 \\ 212 \text { Schools } \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=19862 \\ \mathrm{P}=4632 \\ \text { 127 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=17344 \\ \mathrm{P}=3854 \\ \text { 115 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=1717 \\ \mathrm{P}=133 \end{gathered}$ 80 Schools	$\begin{gathered} \mathrm{N}=406 \\ \mathrm{P}=61 \end{gathered}$ 34 Schools	$\begin{gathered} \mathrm{N}=3474 \\ \mathrm{P}=669 \end{gathered}$ 62 Schools
2004/05	$\begin{array}{r} \mathrm{N}=26949 \\ \mathrm{P}=13358 \\ 303 \text { Schools } \end{array}$	$\begin{gathered} \mathrm{N}=24182 \\ \mathrm{P}=5267 \\ 165 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=21119 \\ \mathrm{P}=4881 \\ 148 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=2763 \\ \mathrm{P}=303 \\ 100 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=1185 \\ \mathrm{P}=106 \\ 58 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=9006 \\ \mathrm{P}=960 \\ 84 \text { Schools } \end{gathered}$
2005/06	$\begin{array}{r} \mathrm{N}=29799 \\ \mathrm{P}=14366 \\ 423 \text { Schools } \end{array}$	$\begin{gathered} \mathrm{N}=31686 \\ \mathrm{P}=7917 \\ 269 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=21288 \\ \mathrm{P}=4620 \\ \text { 152 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=3106 \\ \mathrm{P}=544 \end{gathered}$ 139 Schools	$\begin{gathered} \mathrm{N}=6063 \\ \mathrm{P}=832 \\ \text { 136 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=9083 \\ \mathrm{P}=905 \end{gathered}$ 87 Schools
2006/07	$\begin{array}{r} \mathrm{N}=30310 \\ \mathrm{P}=15793 \\ 451 \text { Schools } \\ \hline \end{array}$	$\begin{gathered} \mathrm{N}=31232 \\ \mathrm{P}=9133 \\ \text { 272 Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=23704 \\ \mathrm{P}=6248 \\ 167 \text { Schools } \end{gathered}$	$\begin{array}{r} \mathrm{N}=6943 \\ \mathrm{P}=3719 \\ 220 \text { Schools } \\ \hline \end{array}$	$\begin{gathered} \mathrm{N}=9731 \\ \mathrm{P}=4545 \\ 169 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=14121 \\ \mathrm{P}=4718 \\ \text { 131 Schools } \end{gathered}$
2007/08	$\begin{aligned} & \mathrm{N}=28973 \\ & \mathrm{P}=15834 \end{aligned}$ $415 \text { Schools }$	$\begin{gathered} \mathrm{N}=25840 \\ \mathrm{P}=7614 \\ 218 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=17286 \\ \mathrm{P}=4299 \\ \text { 153 Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=6590 \\ \mathrm{P}=2425 \\ 18 \text { Schools } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N}=7844 \\ & \mathrm{P}=2548 \end{aligned}$ $132 \text { Schools }$	$\begin{gathered} \mathrm{N}=13226 \\ \mathrm{P}=3223 \\ \text { 118 Schools } \end{gathered}$

APPENDIX B

MSP-MIS Longitudinal Data for Number of Students Assessed and Number of Students at or Above Proficient at State Assessments in Mathematics and Science - Same Schools Across Years 2003/04, 2004/05, 2005/06, 2006/07, and 2007/08

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
All students						
2003/04	$\begin{gathered} \hline \mathrm{N}=42342 \\ \mathrm{P}=19381 \\ 225 \text { Schools } \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=61137 \\ \mathrm{P}=26460 \\ 140 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=45015 \\ \mathrm{P}=18274 \\ 120 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=8630 \\ \mathrm{P}=2268 \\ 102 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=6744 \\ \mathrm{P}=3017 \\ 37 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=20097 \\ \mathrm{P}=10866 \\ 61 \text { Schools } \end{gathered}$
2004/05	$\begin{gathered} \mathrm{N}=43293 \\ \mathrm{P}=25023 \\ 225 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=58878 \\ \mathrm{P}=29231 \\ 140 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=40917 \\ \mathrm{P}=18067 \\ 120 \text { Schools } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=8553 \\ \mathrm{P}=2781 \\ 102 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=7027 \\ \mathrm{P}=3109 \\ 37 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=21242 \\ \mathrm{P}=10893 \\ 61 \text { Schools } \end{gathered}$
2005/06	$\begin{gathered} \mathrm{N}=53627 \\ \mathrm{P}=31201 \\ 225 \text { Schools } \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=67533 \\ \mathrm{P}=33900 \\ \text { 140Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=40567 \\ \mathrm{P}=18483 \\ 120 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=8323 \\ \mathrm{P}=2984 \\ 102 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=6997 \\ \mathrm{P}=3345 \\ 37 \text { Schools } \end{gathered}$	$\begin{aligned} & \hline \mathrm{N}=20109 \\ & \mathrm{P}=11220 \\ & 61 \text { Schools } \end{aligned}$
2006/07	$\begin{gathered} \mathrm{N}=53154 \\ \mathrm{P}=32449 \\ 225 \text { Schools } \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=67875 \\ \mathrm{P}=35909 \\ 140 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=41555 \\ \mathrm{P}=19398 \\ 120 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=8101 \\ \mathrm{P}=2945 \\ 102 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=6596 \\ \mathrm{P}=3360 \\ 37 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=18620 \\ & \mathrm{P}=11671 \end{aligned}$ 61 Schools
2007/08	$\begin{gathered} \mathrm{N}=52215 \\ \mathrm{P}=33387 \\ 225 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=64872 \\ \mathrm{P}=34982 \\ 140 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=41064 \\ \mathrm{P}=19540 \\ 120 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=7862 \\ \mathrm{P}=3414 \\ 102 \text { Schools } \end{gathered}$	$\begin{gathered} \mathrm{N}=6017 \\ \mathrm{P}=3340 \\ 37 \text { Schools } \end{gathered}$	$\begin{aligned} & \mathrm{N}=22614 \\ & \mathrm{P}=13237 \\ & 61 \text { Schools } \end{aligned}$

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
Males						
2003/04	$\begin{gathered} \hline \mathrm{N}=21542 \\ \mathrm{P}=9709 \end{gathered}$	$\begin{aligned} & \hline \mathrm{N}=30775 \\ & \mathrm{P}=13122 \end{aligned}$	$\begin{aligned} \mathrm{N} & =22485 \\ \mathrm{P} & =9161 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4355 \\ & \mathrm{P}=1130 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=3423 \\ & \mathrm{P}=1560 \end{aligned}$	$\begin{gathered} \mathrm{N}=10070 \\ \mathrm{P}=5405 \end{gathered}$
2004/05	$\begin{aligned} & \hline \mathrm{N}=21916 \\ & \mathrm{P}=12492 \end{aligned}$	$\begin{aligned} & \mathrm{N}=28944 \\ & \mathrm{P}=14346 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=19489 \\ & \mathrm{P}=8575 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=4274 \\ & \mathrm{P}=1385 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=2968 \\ & \mathrm{P}=1378 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=10202 \\ & \mathrm{P}=5179 \\ & \hline \end{aligned}$
2005/06	$\begin{aligned} & \hline \mathrm{N}=27074 \\ & \mathrm{P}=14982 \end{aligned}$	$\begin{aligned} & \mathrm{N}=33336 \\ & \mathrm{P}=14953 \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{N} & =19128 \\ \mathrm{P} & =8787 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4170 \\ & \mathrm{P}=1477 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=2919 \\ & \mathrm{P}=1459 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=9554 \\ & \mathrm{P}=5369 \\ & \hline \end{aligned}$
2006/07	$\begin{aligned} & \hline \mathrm{N}=26029 \\ & \mathrm{P}=15474 \end{aligned}$	$\begin{aligned} & \mathrm{N}=30040 \\ & \mathrm{P}=15410 \end{aligned}$	$\begin{gathered} \mathrm{N}=19590 \\ \mathrm{P}=9256 \end{gathered}$	$\begin{aligned} & \mathrm{N}=4046 \\ & \mathrm{P}=1439 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2765 \\ & \mathrm{P}=1383 \end{aligned}$	$\begin{aligned} & \mathrm{N}=8868 \\ & \mathrm{P}=5534 \\ & \hline \end{aligned}$
2007/08	$\begin{aligned} & \mathrm{N}=26746 \\ & \mathrm{P}=16674 \end{aligned}$	$\begin{aligned} & \mathrm{N}=32429 \\ & \mathrm{P}=17278 \end{aligned}$	$\begin{aligned} \mathrm{N} & =19370 \\ \mathrm{P} & =9229 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3953 \\ & \mathrm{P}=1643 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2532 \\ & \mathrm{P}=1401 \end{aligned}$	$\begin{aligned} \mathrm{N} & =10799 \\ \mathrm{P} & =6353 \end{aligned}$
Females						
2003/04	$\begin{gathered} \hline \mathrm{N}=20790 \\ \mathrm{P}=9666 \end{gathered}$	$\begin{aligned} & \mathrm{N}=30342 \\ & \mathrm{P}=13324 \end{aligned}$	$\begin{gathered} \mathrm{N}=22340 \\ \mathrm{P}=8982 \end{gathered}$	$\begin{aligned} & \mathrm{N}=4268 \\ & \mathrm{P}=1138 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=3316 \\ & \mathrm{P}=1456 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=10005 \\ \mathrm{P}=5452 \end{gathered}$
2004/05	$\begin{aligned} & \mathrm{N}=21119 \\ & \mathrm{P}=12405 \end{aligned}$	$\begin{aligned} & \mathrm{N}=28452 \\ & \mathrm{P}=14332 \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{N} & =19275 \\ \mathrm{P} & =8701 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4261 \\ & \mathrm{P}=1382 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2890 \\ & \mathrm{P}=1321 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=9998 \\ & \mathrm{P}=5312 \\ & \hline \end{aligned}$
2005/06	$\begin{aligned} & \mathrm{N}=26059 \\ & \mathrm{P}=14775 \end{aligned}$	$\begin{aligned} & \mathrm{N}=32643 \\ & \mathrm{P}=15216 \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{N} & =19207 \\ \mathrm{P} & =8866 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4126 \\ & \mathrm{P}=1487 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2968 \\ & \mathrm{P}=1458 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=9458 \\ & \mathrm{P}=5416 \\ & \hline \end{aligned}$
2006/07	$\begin{aligned} & \hline \mathrm{N}=24960 \\ & \mathrm{P}=15516 \end{aligned}$	$\begin{aligned} & \mathrm{N}=29122 \\ & \mathrm{P}=15357 \end{aligned}$	$\begin{aligned} \mathrm{N} & =19458 \\ \mathrm{P} & =9214 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4037 \\ & \mathrm{P}=1489 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2752 \\ & \mathrm{P}=1393 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=8541 \\ & \mathrm{P}=5614 \end{aligned}$
2007/08	$\begin{aligned} & \mathrm{N}=25302 \\ & \mathrm{P}=16608 \end{aligned}$	$\begin{aligned} & \mathrm{N}=30983 \\ & \mathrm{P}=16974 \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{N} & =10628 \\ \mathrm{P} & =6323 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3884 \\ & \mathrm{P}=1755 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=2457 \\ & \mathrm{P}=1315 \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{N} & =10628 \\ \mathrm{P} & =6323 \end{aligned}$

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
White						
2003/04	$\begin{aligned} & \mathrm{N}=9575 \\ & \mathrm{P}=7242 \end{aligned}$	$\begin{aligned} & \mathrm{N}=19186 \\ & \mathrm{P}=12524 \end{aligned}$	$\begin{aligned} \mathrm{N} & =13205 \\ \mathrm{P} & =8301 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3869 \\ & \mathrm{P}=1561 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3298 \\ & \mathrm{P}=1755 \end{aligned}$	$\begin{aligned} & \mathrm{N}=9279 \\ & \mathrm{P}=6524 \end{aligned}$
2004/05	$\begin{gathered} \mathrm{N}=10352 \\ \mathrm{P}=8035 \end{gathered}$	$\begin{aligned} & \mathrm{N}=21192 \\ & \mathrm{P}=15099 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=12840 \\ \mathrm{P}=8622 \end{gathered}$	$\begin{aligned} & \mathrm{N}=3705 \\ & \mathrm{P}=1840 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3489 \\ & \mathrm{P}=1860 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=9289 \\ & \mathrm{P}=6638 \end{aligned}$
2005/06	$\begin{aligned} & \mathrm{N}=18152 \\ & \mathrm{P}=12149 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=26952 \\ & \mathrm{P}=16271 \end{aligned}$	$\begin{aligned} \mathrm{N} & =12789 \\ \mathrm{P} & =8861 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=3633 \\ & \mathrm{P}=1860 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=3343 \\ & \mathrm{P}=1963 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=8939 \\ & \mathrm{P}=6492 \\ & \hline \end{aligned}$
2006/07	$\begin{aligned} & \mathrm{N}=17066 \\ & \mathrm{P}=12379 \end{aligned}$	$\begin{aligned} & \hline N=23108 \\ & P=16212 \end{aligned}$	$\begin{gathered} \mathrm{N}=12326 \\ \mathrm{P}=8867 \end{gathered}$	$\begin{aligned} & \mathrm{N}=3468 \\ & \mathrm{P}=1782 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=3275 \\ & \mathrm{P}=1928 \end{aligned}$	$\begin{aligned} & \mathrm{N}=8969 \\ & \mathrm{P}=6606 \end{aligned}$
2007/08	$\begin{aligned} & \mathrm{N}=17184 \\ & \mathrm{P}=12451 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=22741 \\ & \mathrm{P}=16198 \end{aligned}$	$\begin{aligned} \mathrm{N} & =11930 \\ \mathrm{P} & =8499 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=3411 \\ & \mathrm{P}=1960 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=2925 \\ & \mathrm{P}=1812 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=8561 \\ & \mathrm{P}=6750 \end{aligned}$
African American						
2003/04	$\begin{aligned} & \mathrm{N}=4787 \\ & \mathrm{P}=1652 \end{aligned}$	$\begin{aligned} & \mathrm{N}=7101 \\ & \mathrm{P}=1900 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4509 \\ & \mathrm{P}=1226 \end{aligned}$	$\begin{gathered} \mathrm{N}=1075 \\ \mathrm{P}=135 \end{gathered}$	$\begin{aligned} & \mathrm{N}=639 \\ & \mathrm{P}=177 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=3841 \\ & \mathrm{P}=1586 \end{aligned}$
2004/05	$\begin{aligned} & \hline \mathrm{N}=4941 \\ & \mathrm{P}=2146 \end{aligned}$	$\begin{aligned} & \mathrm{N}=7548 \\ & \mathrm{P}=2420 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4305 \\ & \mathrm{P}=1052 \end{aligned}$	$\begin{aligned} & \mathrm{N}=973 \\ & \mathrm{P}=194 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=734 \\ & \mathrm{P}=271 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4126 \\ & \mathrm{P}=1430 \end{aligned}$
2005/06	$\begin{aligned} & \mathrm{N}=4596 \\ & \mathrm{P}=1894 \end{aligned}$	$\begin{aligned} & \mathrm{N}=8344 \\ & \mathrm{P}=1762 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4383 \\ & \mathrm{P}=1413 \end{aligned}$	$\begin{aligned} & \mathrm{N}=845 \\ & \mathrm{P}=238 \end{aligned}$	$\begin{aligned} & \mathrm{N}=853 \\ & \mathrm{P}=309 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3890 \\ & \mathrm{P}=1720 \end{aligned}$
2006/07	$\begin{aligned} & \mathrm{N}=4197 \\ & \mathrm{P}=1955 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=6692 \\ & \mathrm{P}=2542 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4600 \\ & \mathrm{P}=1588 \end{aligned}$	$\begin{aligned} & \mathrm{N}=819 \\ & \mathrm{P}=233 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=737 \\ & \mathrm{P}=287 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3236 \\ & \mathrm{P}=1679 \end{aligned}$
2007/08	$\begin{aligned} & \mathrm{N}=4224 \\ & \mathrm{P}=2147 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6474 \\ & \mathrm{P}=2000 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4626 \\ & \mathrm{P}=1680 \end{aligned}$	$\begin{aligned} & \mathrm{N}=806 \\ & \mathrm{P}=295 \end{aligned}$	$\begin{aligned} & \mathrm{N}=763 \\ & \mathrm{P}=305 \end{aligned}$	$\begin{aligned} & \mathrm{N}=4558 \\ & \mathrm{P}=2251 \end{aligned}$

Hispanic/Latino

2003/04	$\begin{gathered} \mathrm{N}=26518 \\ \mathrm{P}=9746 \end{gathered}$	$\begin{gathered} \mathrm{N}=26558 \\ \mathrm{P}=7186 \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=21704 \\ \mathrm{P}=5965 \end{gathered}$	$\begin{gathered} \mathrm{N}=3050 \\ \mathrm{P}=386 \end{gathered}$	$\begin{gathered} \mathrm{N}=1000 \\ \mathrm{P}=356 \end{gathered}$	$\begin{gathered} \mathrm{N}=3906 \\ \mathrm{P}=913 \end{gathered}$
2004/05	$\begin{aligned} & \mathrm{N}=26068 \\ & \mathrm{P}=13801 \end{aligned}$	$\begin{gathered} \mathrm{N}=22321 \\ \mathrm{P}=6836 \end{gathered}$	$\begin{gathered} \mathrm{N}=18834 \\ \mathrm{P}=6148 \end{gathered}$	$\begin{gathered} \mathrm{N}=3099 \\ \mathrm{P}=495 \end{gathered}$	$\begin{gathered} \mathrm{N}=1095 \\ \mathrm{P}=377 \end{gathered}$	$\begin{gathered} \mathrm{N}=4657 \\ \mathrm{P}=960 \\ \hline \end{gathered}$
2005/06	$\begin{aligned} & \mathrm{N}=27331 \\ & \mathrm{P}=14280 \end{aligned}$	$\begin{gathered} \mathrm{N}=23249 \\ \mathrm{P}=7289 \end{gathered}$	$\begin{gathered} \mathrm{N}=18339 \\ \mathrm{P}=5817 \end{gathered}$	$\begin{gathered} \mathrm{N}=3017 \\ \mathrm{P}=595 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=1237 \\ \mathrm{P}=471 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{N}=4135 \\ & \mathrm{P}=1093 \end{aligned}$
2006/07	$\begin{aligned} & \mathrm{N}=26244 \\ & \mathrm{P}=14827 \end{aligned}$	$\begin{gathered} \mathrm{N}=21875 \\ \mathrm{P}=7253 \end{gathered}$	$\begin{gathered} \mathrm{N}=19036 \\ \mathrm{P}=6254 \end{gathered}$	$\begin{gathered} \mathrm{N}=2790 \\ \mathrm{P}=556 \end{gathered}$	$\begin{aligned} & \mathrm{N}=444 \\ & \mathrm{P}=111 \end{aligned}$	$\begin{aligned} & \mathrm{N}=3008 \\ & \mathrm{P}=1220 \end{aligned}$
2007/08	$\begin{aligned} & \mathrm{N}=25945 \\ & \mathrm{P}=15734 \end{aligned}$	$\begin{gathered} \mathrm{N}=21929 \\ \mathrm{P}=7766 \end{gathered}$	$\begin{gathered} \mathrm{N}=19141 \\ \mathrm{P}=6667 \end{gathered}$	$\begin{gathered} \mathrm{N}=2842 \\ \mathrm{P}=751 \end{gathered}$	$\begin{aligned} & \mathrm{N}=431 \\ & \mathrm{P}=124 \end{aligned}$	$\begin{gathered} \mathrm{N}=6084 \\ \mathrm{P}=1937 \end{gathered}$

Asian

$\mathbf{2 0 0 3 / 0 4}$	$\mathrm{N}=366$	$\mathrm{~N}=4628$	$\mathrm{~N}=2848$	$\mathrm{~N}=225$	$\mathrm{~N}=205$	$\mathrm{~N}=1769$
	$\mathrm{~N}=264$	$\mathrm{~N}=217$	$\mathrm{~N}=4287$	$\mathrm{~N}=1801$	$\mathrm{~N}=99$	$\mathrm{P}=105$
	$\mathrm{P}=161$	$\mathrm{P}=3532$	$\mathrm{P}=1031$	$\mathrm{P}=52$	$\mathrm{~N}=123$	$\mathrm{~N}=1678$
	$\mathrm{P}=1395$					
$\mathbf{2 0 0 5 / 0 6}$	$\mathrm{~N}=404$	$\mathrm{~N}=4944$	$\mathrm{~N}=1984$	$\mathrm{~N}=72$	$\mathrm{~N}=127$	$\mathrm{~N}=1620$
	$\mathrm{P}=295$	$\mathrm{P}=3955$	$\mathrm{P}=1190$	$\mathrm{P}=51$	$\mathrm{P}=74$	$\mathrm{P}=1366$
$\mathbf{2 0 0 6 / 0 7}$	$\mathrm{~N}=372$	$\mathrm{~N}=4349$	$\mathrm{~N}=1564$	$\mathrm{~N}=105$	$\mathrm{~N}=119$	$\mathrm{~N}=167$
	$\mathrm{P}=291$	$\mathrm{P}=3482$	$\mathrm{P}=978$	$\mathrm{P}=67$	$\mathrm{P}=64$	$\mathrm{P}=56$
$\mathbf{2 0 0 7 / 0 8}$	$\mathrm{~N}=896$	$\mathrm{~N}=4543$	$\mathrm{~N}=1985$	$\mathrm{~N}=245$	$\mathrm{~N}=169$	$\mathrm{~N}=1838$
	$\mathrm{P}=668$	$\mathrm{P}=3698$	$\mathrm{P}=1237$	$\mathrm{P}=146$	$\mathrm{P}=101$	$\mathrm{P}=1612$

Others

$\mathbf{2 0 0 3 / 0 4}$	$\mathrm{N}=1096$	$\mathrm{~N}=3664$	$\mathrm{~N}=2749$	$\mathrm{~N}=411$	$\mathrm{~N}=1602$	$\mathrm{~N}=1302$
	$\mathrm{P}=1263$	$\mathrm{P}=981$	$\mathrm{P}=87$	$\mathrm{P}=624$	$\mathrm{P}=448$	
$\mathbf{2 0 0 4 / 0 5}$	$\mathrm{~N}=927$	$\mathrm{~N}=1628$	$\mathrm{~N}=612$	$\mathrm{~N}=40$	$\mathrm{~N}=12$	$\mathrm{~N}=98$
	$\mathrm{P}=566$	$\mathrm{P}=597$	$\mathrm{P}=264$	$\mathrm{P}=7$	$\mathrm{P}=7$	$\mathrm{P}=9$
$\mathbf{2 0 0 5 / 0 6}$	$\mathrm{~N}=671$	$\mathrm{~N}=1190$	$\mathrm{~N}=333$	$\mathrm{~N}=39$	$\mathrm{~N}=6$	$\mathrm{~N}=129$
	$\mathrm{P}=316$	$\mathrm{P}=384$	$\mathrm{P}=87$	$\mathrm{P}=12$	$\mathrm{P}=3$	$\mathrm{P}=29$
$\mathbf{2 0 0 6 / 0 7}$	$\mathrm{~N}=1288$	$\mathrm{~N}=1944$	$\mathrm{~N}=623$	$\mathrm{~N}=259$	$\mathrm{~N}=615$	$\mathrm{~N}=67$
	$\mathrm{P}=575$	$\mathrm{P}=761$	$\mathrm{P}=243$	$\mathrm{P}=119$	$\mathrm{P}=284$	$\mathrm{P}=11$
	$\mathrm{~N}=1927$	$\mathrm{~N}=2162$	$\mathrm{~N}=970$	$\mathrm{~N}=534$	$\mathrm{~N}=701$	$\mathrm{~N}=389$
	$\mathrm{P}=951$	$\mathrm{P}=924$	$\mathrm{P}=419$	$\mathrm{P}=246$	$\mathrm{P}=374$	$\mathrm{P}=127$

APPENDIX B (continued)

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
Special Education Students						
2003/04	$\begin{aligned} & \mathrm{N}=3564 \\ & \mathrm{P}=1075 \end{aligned}$	$\begin{gathered} \mathrm{N}=5588 \\ \mathrm{P}=936 \end{gathered}$	$\begin{gathered} \mathrm{N}=4058 \\ \mathrm{P}=609 \end{gathered}$	$\begin{aligned} & \mathrm{N}=791 \\ & \mathrm{P}=123 \end{aligned}$	$\begin{aligned} & \mathrm{N}=619 \\ & \mathrm{P}=118 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=1452 \\ \mathrm{P}=390 \end{gathered}$
2004/05	$\begin{aligned} & \hline \mathrm{N}=3609 \\ & \mathrm{P}=1197 \end{aligned}$	$\begin{gathered} \mathrm{N}=4505 \\ \mathrm{P}=894 \end{gathered}$	$\begin{gathered} \mathrm{N}=2783 \\ \mathrm{P}=574 \end{gathered}$	$\begin{gathered} \hline \mathrm{N}=509 \\ \mathrm{P}=84 \end{gathered}$	$\begin{aligned} \mathrm{N} & =654 \\ \mathrm{P} & =83 \end{aligned}$	$\begin{gathered} \mathrm{N}=1490 \\ \mathrm{P}=341 \end{gathered}$
2005/06	$\begin{aligned} & \mathrm{N}=4824 \\ & \mathrm{P}=1665 \end{aligned}$	$\begin{aligned} \mathrm{N} & =5315 \\ \mathrm{P} & =869 \end{aligned}$	$\begin{aligned} \mathrm{N} & =2351 \\ \mathrm{P} & =621 \end{aligned}$	$\begin{aligned} & \mathrm{N}=544 \\ & \mathrm{P}=120 \end{aligned}$	$\begin{gathered} \mathrm{N}=546 \\ \mathrm{P}=88 \end{gathered}$	$\begin{gathered} \mathrm{N}=1366 \\ \mathrm{P}=392 \end{gathered}$
2006/07	$\begin{aligned} & \mathrm{N}=5232 \\ & \mathrm{P}=1991 \end{aligned}$	$\begin{aligned} & \mathrm{N}=5808 \\ & \mathrm{P}=1135 \end{aligned}$	$\begin{gathered} \mathrm{N}=3529 \\ \mathrm{P}=798 \end{gathered}$	$\begin{aligned} & \mathrm{N}=538 \\ & \mathrm{P}=111 \end{aligned}$	$\begin{gathered} \mathrm{N}=581 \\ \mathrm{P}=88 \end{gathered}$	$\begin{gathered} \mathrm{N}=1444 \\ \mathrm{P}=511 \end{gathered}$
2007/08	$\begin{aligned} & \mathrm{N}=3923 \\ & \mathrm{P}=1231 \end{aligned}$	$\begin{gathered} \mathrm{N}=4680 \\ \mathrm{P}=886 \end{gathered}$	$\begin{gathered} \mathrm{N}=3588 \\ \mathrm{P}=883 \end{gathered}$	$\begin{aligned} & \hline \mathrm{N}=798 \\ & \mathrm{P}=189 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=559 \\ & \mathrm{P}=104 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=1789 \\ \mathrm{P}=635 \end{gathered}$

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	MiddIe Schools	High Schools
Limited English Proficiency Students						
2003/04	$\begin{aligned} \mathrm{N} & =19792 \\ \mathrm{P} & =6737 \end{aligned}$	$\begin{aligned} \mathrm{N} & =18357 \\ \mathrm{P} & =4154 \end{aligned}$	$\begin{aligned} \mathrm{N} & =13248 \\ \mathrm{P} & =2792 \end{aligned}$	$\begin{gathered} \mathrm{N}=1576 \\ \mathrm{P}=96 \end{gathered}$	$\begin{gathered} \mathrm{N}=178 \\ \mathrm{P}=25 \end{gathered}$	$\begin{gathered} \mathrm{N}=1669 \\ \mathrm{P}=238 \end{gathered}$
2004/05	$\begin{aligned} & \mathrm{N}=21784 \\ & \mathrm{P}=11324 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=15393 \\ \mathrm{P}=4058 \end{gathered}$	$\begin{aligned} \mathrm{N} & =11753 \\ \mathrm{P} & =3544 \end{aligned}$	$\begin{gathered} \mathrm{N}=1920 \\ \mathrm{P}=130 \end{gathered}$	$\begin{gathered} \mathrm{N}=179 \\ \mathrm{P}=17 \end{gathered}$	$\begin{gathered} \mathrm{N}=2623 \\ \mathrm{P}=285 \end{gathered}$
2005/06	$\begin{aligned} & \mathrm{N}=22288 \\ & \mathrm{P}=11291 \end{aligned}$	$\begin{gathered} \mathrm{N}=15413 \\ \mathrm{P}=4265 \end{gathered}$	$\begin{gathered} \mathrm{N}=11420 \\ \mathrm{P}=3244 \end{gathered}$	$\begin{gathered} \mathrm{N}=1747 \\ \mathrm{P}=203 \end{gathered}$	$\begin{gathered} \mathrm{N}=300 \\ \mathrm{P}=71 \end{gathered}$	$\begin{gathered} \mathrm{N}=2180 \\ \mathrm{P}=297 \end{gathered}$
2006/07	$\begin{aligned} & \mathrm{N}=21485 \\ & \mathrm{P}=11735 \end{aligned}$	$\begin{aligned} \mathrm{N} & =16034 \\ \mathrm{P} & =5206 \end{aligned}$	$\begin{aligned} \mathrm{N} & =14441 \\ \mathrm{P} & =4759 \end{aligned}$	$\begin{gathered} \mathrm{N}=1870 \\ \mathrm{P}=236 \end{gathered}$	$\begin{gathered} \mathrm{N}=304 \\ \mathrm{P}=74 \end{gathered}$	$\begin{gathered} \mathrm{N}=1196 \\ \mathrm{P}=279 \end{gathered}$
2007/08	$\begin{aligned} & \mathrm{N}=20539 \\ & \mathrm{P}=12136 \end{aligned}$	$\begin{aligned} \hline \mathrm{N} & =14619 \\ \mathrm{P} & =4661 \end{aligned}$	$\begin{aligned} \mathrm{N} & =11178 \\ \mathrm{P} & =3633 \end{aligned}$	$\begin{gathered} \mathrm{N}=1847 \\ \mathrm{P}=322 \end{gathered}$	$\begin{gathered} \mathrm{N}=330 \\ \mathrm{P}=93 \end{gathered}$	$\begin{gathered} \mathrm{N}=2866 \\ \mathrm{P}=482 \end{gathered}$

APPENDIX C

MSP-MIS Longitudinal Data for Number of Students Assessed and Number of Students at or Above Proficient at State Assessments in Mathematics and Science - Same Schools Across Years 2004/05, 2005/06, 2006/07, and 2007/08

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
All students						
$\mathbf{2 0 0 4 / 0 5}$	$\mathrm{N}=70238$	$\mathrm{~N}=117879$	$\mathrm{~N}=65831$	$\mathrm{~N}=12895$	$\mathrm{~N}=32440$	$\mathrm{~N}=42410$
	$\mathrm{P}=42942$	$\mathrm{P}=60996$	$\mathrm{P}=28718$	$\mathrm{P}=5334$	$\mathrm{P}=21034$	$\mathrm{P}=19708$
	393 Schools	233 Schools	190 Schools	136 Schools	89 Schools	125 Schools
$\mathbf{2 0 0 5 / 0 6}$	$\mathrm{N}=85788$	$\mathrm{~N}=128535$	$\mathrm{~N}=65943$	$\mathrm{~N}=12705$	$\mathrm{~N}=32333$	$\mathrm{~N}=41560$
	$\mathrm{P}=52107$	$\mathrm{P}=67613$	$\mathrm{P}=30077$	$\mathrm{P}=5648$	$\mathrm{P}=17883$	$\mathrm{P}=20188$
	393 Schools	233 Schools	190 Schools	136 Schools	89 Schools	125 Schools
$\mathbf{2 0 0 6 / 0 7}$	$\mathrm{N}=85144$	$\mathrm{~N}=129692$	$\mathrm{~N}=66519$	$\mathrm{~N}=12332$	$\mathrm{~N}=31817$	$\mathrm{~N}=40848$
	$\mathrm{P}=53776$	$\mathrm{P}=70478$	$\mathrm{P}=30774$	$\mathrm{P}=5320$	$\mathrm{P}=18374$	$\mathrm{P}=21150$
	393 Schools	233 Schools	190 Schools	136 Schools	89 Schools	125 Schools
$\mathbf{2 0 0 7 / 0 8}$	$\mathrm{N}=85173$	$\mathrm{~N}=123175$	$\mathrm{~N}=65130$	$\mathrm{~N}=12127$	$\mathrm{~N}=30017$	$\mathrm{~N}=44067$
	$\mathrm{P}=54243$	$\mathrm{P}=65109$	$\mathrm{P}=28708$	$\mathrm{P}=5503$	$\mathrm{P}=14332$	$\mathrm{P}=21458$
	393 Schools	233 Schools	190 Schools	136 Schools	89 Schools	125 Schools

	MATHEMATICS			SCIENCE		
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
Male						
2004/05	$\begin{aligned} & \mathrm{N}=30908 \\ & \mathrm{P}=18153 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=43598 \\ & \mathrm{P}=20600 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=28591 \\ & \mathrm{P}=11592 \end{aligned}$	$\begin{aligned} & \hline N=5463 \\ & P=1823 \end{aligned}$	$\begin{aligned} & \mathrm{N}=5407 \\ & \mathrm{P}=2695 \end{aligned}$	$\begin{aligned} \mathrm{N} & =17914 \\ \mathrm{P} & =8071 \end{aligned}$
2005/06	$\begin{aligned} & \mathrm{N}=42877 \\ & \mathrm{P}=24983 \end{aligned}$	$\begin{aligned} & \mathrm{N}=60025 \\ & \mathrm{P}=29025 \end{aligned}$	$\begin{aligned} & \mathrm{N}=30191 \\ & \mathrm{P}=13680 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6381 \\ & \mathrm{P}=2848 \\ & \hline \end{aligned}$	$\begin{aligned} \mathrm{N} & =14996 \\ \mathrm{P} & =8403 \end{aligned}$	$\begin{gathered} \mathrm{N}=19288 \\ \mathrm{P}=9528 \end{gathered}$
2006/07	$\begin{aligned} & \mathrm{N}=41191 \\ & \mathrm{P}=25382 \end{aligned}$	$\begin{aligned} & \mathrm{N}=56132 \\ & \mathrm{P}=29407 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=30300 \\ & \mathrm{P}=14061 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6193 \\ & \mathrm{P}=2662 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=14627 \\ \mathrm{P}=8303 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=18724 \\ \mathrm{P}=9914 \end{gathered}$
2007/08	$\begin{aligned} & \mathrm{N}=42503 \\ & \mathrm{P}=26656 \end{aligned}$	$\begin{aligned} & \mathrm{N}=57993 \\ & \mathrm{P}=29770 \end{aligned}$	$\begin{aligned} & \mathrm{N}=29864 \\ & \mathrm{P}=13060 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6090 \\ & \mathrm{P}=2670 \end{aligned}$	$\begin{aligned} \mathrm{N} & =14135 \\ \mathrm{P} & =6659 \end{aligned}$	$\begin{aligned} & \mathrm{N}=20616 \\ & \mathrm{P}=10180 \end{aligned}$
Females						
2004/05	$\begin{aligned} & \hline \mathrm{N}=29486 \\ & \mathrm{P}=17750 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=42673 \\ & \mathrm{P}=20437 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=28326 \\ & \mathrm{P}=11596 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=5337 \\ & \mathrm{P}=1744 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=5181 \\ & \mathrm{P}=2597 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=17636 \\ \mathrm{P}=7895 \end{gathered}$
2005/06	$\begin{aligned} & \mathrm{N}=41011 \\ & \mathrm{P}=24336 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=58847 \\ & \mathrm{P}=29794 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=30466 \\ & \mathrm{P}=14019 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6179 \\ & \mathrm{P}=2721 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=14992 \\ \mathrm{P}=8496 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=19366 \\ \mathrm{P}=9470 \end{gathered}$
2006/07	$\begin{aligned} & \mathrm{N}=39237 \\ & \mathrm{P}=24866 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline N=54422 \\ & P=29609 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=30276 \\ & \mathrm{P}=14186 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=6013 \\ & \mathrm{P}=2568 \end{aligned}$	$\begin{gathered} \mathrm{N}=14366 \\ \mathrm{P}=8405 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}=18567 \\ \mathrm{P}=9834 \\ \hline \end{gathered}$
2007/08	$\begin{aligned} & \mathrm{N}=40516 \\ & \mathrm{P}=26193 \end{aligned}$	$\begin{aligned} & \mathrm{N}=55869 \\ & \mathrm{P}=29347 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{N}=29843 \\ & \mathrm{P}=13111 \end{aligned}$	$\begin{aligned} & \mathrm{N}=5910 \\ & \mathrm{P}=2746 \end{aligned}$	$\begin{aligned} & \mathrm{N}=13870 \\ & \mathrm{P}=6450 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N}=20420 \\ \mathrm{P}=9980 \end{gathered}$

APPENDIX C (continued)

	MATHEMATICS							SCIENCE	
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools			
White									
$\mathbf{2 0 0 4 / 0 5}$	$\mathrm{N}=17902$	$\mathrm{~N}=33623$	$\mathrm{~N}=17944$	$\mathrm{~N}=4184$	$\mathrm{~N}=5446$	$\mathrm{~N}=13433$			
	$\mathrm{P}=14004$	$\mathrm{P}=23727$	$\mathrm{P}=11986$	$\mathrm{P}=2086$	$\mathrm{P}=3348$	$\mathrm{P}=9979$			
$2 \mathbf{2 0 0 5 / 0 6}$	$\mathrm{~N}=31564$	$\mathrm{~N}=44065$	$\mathrm{~N}=18984$	$\mathrm{~N}=4964$	$\mathrm{~N}=8770$	$\mathrm{~N}=13143$			
	$\mathrm{P}=22342$	$\mathrm{P}=28989$	$\mathrm{P}=13156$	$\mathrm{P}=2923$	$\mathrm{P}=6235$	$\mathrm{P}=9928$			
$\mathbf{2 0 0 6 / 0 7}$	$\mathrm{~N}=29614$	$\mathrm{~N}=43518$	$\mathrm{~N}=14362$	$\mathrm{~N}=4723$	$\mathrm{~N}=11840$	$\mathrm{~N}=15008$			
	$\mathrm{P}=22249$	$\mathrm{P}=31625$	$\mathrm{P}=8008$	$\mathrm{P}=2755$	$\mathrm{P}=8856$	$\mathrm{P}=11480$			
$\mathbf{2 0 0 7 / 0 8}$	$\mathrm{~N}=29763$	$\mathrm{~N}=42796$	$\mathrm{~N}=18930$	$\mathrm{~N}=4627$	$\mathrm{~N}=11382$	$\mathrm{~N}=14486$			
	$\mathrm{P}=21872$	$\mathrm{P}=27541$	$\mathrm{P}=12601$	$\mathrm{P}=2651$	$\mathrm{P}=5251$	$\mathrm{P}=10491$			

African American

2004/05	$\begin{aligned} & \hline \mathrm{N}=9648 \\ & \mathrm{P}=4719 \end{aligned}$	$\begin{aligned} \mathrm{N} & =11923 \\ \mathrm{P} & =4405 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6882 \\ & \mathrm{P}=2031 \end{aligned}$	$\begin{gathered} \mathrm{N}=1574 \\ \mathrm{P}=410 \end{gathered}$	$\begin{gathered} \mathrm{N}=1898 \\ \mathrm{P}=831 \end{gathered}$	$\begin{aligned} & \hline \mathrm{N}=6040 \\ & \mathrm{P}=2083 \end{aligned}$
2005/06	$\begin{gathered} \mathrm{N}=14259 \\ \mathrm{P}=7249 \end{gathered}$	$\begin{aligned} & \mathrm{N}=24982 \\ & \mathrm{P}=10809 \end{aligned}$	$\begin{aligned} & \hline N=6952 \\ & P=2478 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2381 \\ & \mathrm{P}=1189 \end{aligned}$	$\begin{gathered} \mathrm{N}=11829 \\ \mathrm{P}=5433 \end{gathered}$	$\begin{aligned} & \hline \mathrm{N}=5817 \\ & \mathrm{P}=2367 \end{aligned}$
2006/07	$\begin{gathered} \mathrm{N}=13447 \\ \mathrm{P}=7225 \end{gathered}$	$\begin{aligned} & \mathrm{N}=23498 \\ & \mathrm{P}=11847 \end{aligned}$	$\begin{aligned} & \mathrm{N}=9797 \\ & \mathrm{P}=4802 \end{aligned}$	$\begin{gathered} \mathrm{N}=2335 \\ \mathrm{P}=983 \end{gathered}$	$\begin{gathered} \mathrm{N}=12162 \\ \mathrm{P}=5802 \end{gathered}$	$\begin{aligned} & \mathrm{N}=7760 \\ & \mathrm{P}=3955 \end{aligned}$
2007/08	$\begin{gathered} \mathrm{N}=14018 \\ \mathrm{P}=7430 \end{gathered}$	$\begin{aligned} & \mathrm{N}=22766 \\ & \mathrm{P}=11059 \end{aligned}$	$\begin{aligned} & \mathrm{N}=9351 \\ & \mathrm{P}=4295 \end{aligned}$	$\begin{gathered} \mathrm{N}=2345 \\ \mathrm{P}=983 \end{gathered}$	$\begin{gathered} \mathrm{N}=11916 \\ \mathrm{P}=5777 \end{gathered}$	$\begin{aligned} & \mathrm{N}=8901 \\ & \mathrm{P}=4613 \end{aligned}$

Hispanic/Latino

$2004 / \mathbf{0 5}$	$\mathrm{N}=30990$	$\mathrm{~N}=38394$	$\mathrm{~N}=28844$	$\mathrm{~N}=4260$	$\mathrm{~N}=3209$	$\mathrm{~N}=12978$
	$\mathrm{P}=16208$	$\mathrm{P}=11071$	$\mathrm{P}=7544$	$\mathrm{P}=857$	$\mathrm{P}=1281$	$\mathrm{P}=2149$
$\mathbf{2 0 0 5 / 0 6}$	$\mathrm{~N}=33751$	$\mathrm{~N}=40076$	$\mathrm{~N}=27769$	$\mathrm{~N}=4114$	$\mathrm{~N}=4133$	$\mathrm{~N}=12698$
	$\mathrm{P}=17446$	$\mathrm{P}=12182$	$\mathrm{P}=7073$	$\mathrm{P}=982$	$\mathrm{P}=1458$	$\mathrm{P}=2178$
$\mathbf{2 0 0 6 / 0 7}$	$\mathrm{~N}=32914$	$\mathrm{~N}=38215$	$\mathrm{~N}=28391$	$\mathrm{~N}=3824$	$\mathrm{~N}=2936$	$\mathrm{~N}=12114$
	$\mathrm{P}=18368$	$\mathrm{P}=12061$	$\mathrm{P}=7421$	$\mathrm{P}=931$	$\mathrm{P}=920$	$\mathrm{P}=2444$
$\mathbf{2 0 0 7 / 0 8}$	$\mathrm{~N}=32983$	$\mathrm{~N}=37498$	$\mathrm{~N}=28380$	$\mathrm{~N}=3939$	$\mathrm{~N}=2629$	$\mathrm{~N}=28380$
	$\mathrm{P}=19465$	$\mathrm{P}=13298$	$\mathrm{P}=7776$	$\mathrm{P}=1212$	$\mathrm{P}=865$	$\mathrm{P}=7776$

Asian

2004/05	$\begin{gathered} \mathrm{N}=2531 \\ \mathrm{P}=558 \end{gathered}$	$\begin{aligned} & \mathrm{N}=5521 \\ & \mathrm{P}=4319 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2406 \\ & \mathrm{P}=1273 \end{aligned}$	$\begin{gathered} \mathrm{N}=160 \\ \mathrm{P}=89 \end{gathered}$	$\begin{aligned} & \mathrm{N}=250 \\ & \mathrm{P}=167 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2246 \\ & \mathrm{P}=1551 \end{aligned}$
2005/06	$\begin{aligned} & \mathrm{N}=929 \\ & \mathrm{P}=733 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6500 \\ & \mathrm{P}=5060 \end{aligned}$	$\begin{aligned} & \hline N=2460 \\ & P=1403 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=197 \\ & \mathrm{P}=147 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=390 \\ & \mathrm{P}=273 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=2099 \\ & \mathrm{P}=1567 \end{aligned}$
2006/07	$\begin{aligned} & \mathrm{N}=880 \\ & \mathrm{P}=720 \end{aligned}$	$\begin{aligned} & \mathrm{N}=5919 \\ & \mathrm{P}=4596 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2024 \\ & \mathrm{P}=1222 \end{aligned}$	$\begin{aligned} & \mathrm{N}=216 \\ & \mathrm{P}=154 \end{aligned}$	$\begin{aligned} & \mathrm{N}=430 \\ & \mathrm{P}=311 \end{aligned}$	$\begin{aligned} & \mathrm{N}=644 \\ & \mathrm{P}=253 \end{aligned}$
2007/08	$\begin{aligned} & \mathrm{N}=1489 \\ & \mathrm{P}=1130 \end{aligned}$	$\begin{aligned} & \mathrm{N}=6186 \\ & \mathrm{P}=4846 \end{aligned}$	$\begin{aligned} & \hline N=2406 \\ & \mathrm{P}=1388 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=390 \\ & \mathrm{P}=239 \end{aligned}$	$\begin{aligned} & \hline \mathrm{N}=490 \\ & \mathrm{P}=306 \end{aligned}$	$\begin{aligned} & \mathrm{N}=2281 \\ & \mathrm{P}=1766 \end{aligned}$

Others

$2 \mathbf{2 0 0 4 / 0 5}$	$\mathrm{~N}=4399$					
	$\mathrm{P}=3449$	$\mathrm{~N}=21214$	$\mathrm{~N}=4826$	$\mathrm{~N}=1856$	$\mathrm{~N}=18924$	$\mathrm{~N}=4305$
$\mathrm{P}=13742$	$\mathrm{P}=3930$	$\mathrm{P}=1617$	$\mathrm{P}=14415$	$\mathrm{P}=2689$		
$\mathbf{2 0 0 5 / 0 6}$	$\mathrm{~N}=1596$	$\mathrm{~N}=6222$	$\mathrm{~N}=5052$	$\mathrm{~N}=148$	$\mathrm{~N}=4482$	$\mathrm{~N}=4725$
	$\mathrm{P}=937$	$\mathrm{P}=4156$	$\mathrm{P}=3896$	$\mathrm{P}=103$	$\mathrm{P}=3369$	$\mathrm{P}=2881$
$\mathbf{2 0 0 6 / 0 7}$	$\mathrm{~N}=2429$	$\mathrm{~N}=3121$	$\mathrm{~N}=822$	$\mathrm{~N}=358$	$\mathrm{~N}=1154$	$\mathrm{~N}=273$
	$\mathrm{P}=1400$	$\mathrm{P}=1439$	$\mathrm{P}=319$	$\mathrm{P}=196$	$\mathrm{P}=678$	$\mathrm{P}=98$
$\mathbf{2 0 0 7 / 0 8}$	$\mathrm{~N}=3022$	$\mathrm{~N}=3976$	$\mathrm{~N}=1404$	$\mathrm{~N}=650$	$\mathrm{~N}=1588$	$\mathrm{~N}=789$
	$\mathrm{P}=1587$	$\mathrm{P}=1963$	$\mathrm{P}=507$	$\mathrm{P}=300$	$\mathrm{P}=910$	$\mathrm{P}=209$

APPENDIX C (continued)

	MATHEMATICS		SCIENCE			
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
$\mathbf{2 0 0 4 / 0 5}$		$\mathrm{N}=5480$	$\mathrm{~N}=8328$	$\mathrm{~N}=4449$	$\mathrm{~N}=835$	$\mathrm{~N}=1292$
	$\mathrm{P}=1828$	$\mathrm{P}=1682$	$\mathrm{P}=786$	$\mathrm{P}=154$	$\mathrm{P}=261$	$\mathrm{P}=607$
$\mathbf{2 0 0 5 / 0 6}$	$\mathrm{~N}=8792$	$\mathrm{~N}=10884$	$\mathrm{~N}=4123$	$\mathrm{~N}=1148$	$\mathrm{~N}=2971$	$\mathrm{~N}=2816$
	$\mathrm{P}=3149$	$\mathrm{P}=2114$	$\mathrm{P}=878$	$\mathrm{P}=425$	$\mathrm{P}=774$	$\mathrm{P}=623$
$2 \mathbf{2 0 0 6 / 0 7}$	$\mathrm{~N}=8999$	$\mathrm{~N}=10880$	$\mathrm{~N}=5340$	$\mathrm{~N}=1119$	$\mathrm{~N}=2586$	$\mathrm{~N}=3086$
	$\mathrm{P}=3503$	$\mathrm{P}=2280$	$\mathrm{P}=1081$	$\mathrm{P}=359$	$\mathrm{P}=670$	$\mathrm{P}=787$
$\mathbf{2 0 0 7 / 0 8}$	$\mathrm{~N}=7368$	$\mathrm{~N}=8499$	$\mathrm{~N}=5487$	$\mathrm{~N}=1129$	$\mathrm{~N}=1236$	$\mathrm{~N}=3506$
	$\mathrm{P}=2537$	$\mathrm{P}=1845$	$\mathrm{P}=1154$	$\mathrm{P}=286$	$\mathrm{P}=322$	$\mathrm{P}=1002$

	MATHEMATICS		SCIENCE			
	Elementary Schools	Middle Schools	High Schools	Elementary Schools	Middle Schools	High Schools
Limited English Proficiency Students						
$\mathbf{2 0 0 4 / 0 5}$	$\mathrm{N}=24303$	$\mathrm{~N}=23406$	$\mathrm{~N}=16760$	$\mathrm{~N}=2397$	$\mathrm{~N}=743$	$\mathrm{~N}=6977$
	$\mathrm{P}=12202$	$\mathrm{P}=5068$	$\mathrm{P}=3909$	$\mathrm{P}=215$	$\mathrm{P}=44$	$\mathrm{P}=505$
$\mathbf{2 0 0 5 / 0 6}$	$\mathrm{~N}=25672$	$\mathrm{~N}=24241$	$\mathrm{~N}=16339$	$\mathrm{~N}=2237$	$\mathrm{~N}=1738$	$\mathrm{~N}=6984$
	$\mathrm{P}=12562$	$\mathrm{P}=5508$	$\mathrm{P}=3589$	$\mathrm{P}=310$	$\mathrm{P}=242$	$\mathrm{P}=567$
$\mathbf{2 0 0 6 / 0 7}$	$\mathrm{~N}=24532$	$\mathrm{~N}=23983$	$\mathrm{~N}=19188$	$\mathrm{~N}=2318$	$\mathrm{~N}=1441$	$\mathrm{~N}=5865$
	$\mathrm{P}=13075$	$\mathrm{P}=6465$	$\mathrm{P}=5090$	$\mathrm{P}=337$	$\mathrm{P}=197$	$\mathrm{P}=468$
$\mathbf{2 0 0 7 / 0 8}$	$\mathrm{~N}=23867$	$\mathrm{~N}=21649$	$\mathrm{~N}=15498$	$\mathrm{~N}=2291$	$\mathrm{~N}=1084$	$\mathrm{~N}=7097$
	$\mathrm{P}=13604$	$\mathrm{P}=5982$	$\mathrm{P}=3889$	$\mathrm{P}=447$	$\mathrm{P}=181$	$\mathrm{P}=610$

