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Introduction 
 

Mathematics educators have emphasized the necessity of students having the ability to 

reason conceptually relative to functions and conceptualize patterns of change (Kaput, 1994; 

Monk, 1992; NCTM, 1989, 2000; Sfard, 1992; Thorpe, 1989; Vinner & Dreyfus, 1989). 

Recently, the National Council of Teachers of Mathematics (NCTM, 2000) Standards called for 

students to be able to analyze patterns of change in various contexts, such as interpreting the 

statement “the rate of inflation is decreasing.” The NCTM Standards also suggested that students 

develop deeper understanding of mathematically representing the ways in which quantities 

change (NCTM, 2000). Although it is not clear if mathematics curricula is adequately 

responding to these calls, it is well documented that high performing precalculus and calculus 

students have weak understandings of the function concept and difficulty modeling function 

relationships involving the rate of change of one variable as it continuously varies with another 

variable (Carlson, 1998; Monk & Nemirovsky, 1994; Oehrtman, Carlson, & Thompson, 2008; 

Thompson, 1994). This ability to reason covariationally has been shown to be critical in the 

understanding of functions, central concepts of calculus (Carlson, 1998; Carlson, Jacobs, Coe, 

Larsen, & Hsu, 2002; Thompson, 1994), and differential equations (Rasmussen, 2001; Zandieh, 

2000). 
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In response to the continued difficulty of students constructing and modeling function 

relationships, we conducted an investigation of undergraduate precalculus students’ developing 

quantitative and covariational reasoning abilities. Specifically, this investigation focused on a 

detailed examination of possible factors that contribute to or hinder the ability of a student to 

reason about quantities in a dynamic situation. It was the intention of this investigation to gain 

insights about the quantities that students do construct and the influence of these conceptions on 

reasoning about functions and covariational situations. This involved an attempt to identify 

various mental actions in the process of identifying quantities and the relation of these mental 

actions to a student’s ability to conceive of functional relationships and reason covariationally 

with regards to these relationships. When referring to “identifying various mental actions in the 

process of identifying quantities,” this should not be interpreted as stating that all students do 

identify quantities. In fact, we conjectured that the opposite is often the case and students do not 

necessarily identify measurable quantities of a situation. This investigation intended to identify 

what conceptions of quantities students possibly develop, how the conceptions of quantities and 

their relationships influence reasoning about functions and dynamic relationships, and what 

difficulties exist in the process of identifying quantities and their relationships.1 

Background 

Although multiple studies have investigated students’ conceptions of functions and their 

development and ability to reason covariationally (Carlson, 1998; Carlson, et al., 2002; Harel & 

Dubinsky, 1992a), the notion of a quantity is consistently mentioned but not described in each 

study. For instance, Dubinsky and Harel describe a process conception of function involving “a 

                                                
1 The term “difficulties” is meant to range from not building a developed image of the situation 

to attitudes and beliefs (e.g., math is not about identifying quantities). 
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dynamic transformation of quantities...” (1992b, p. 85). Covariational reasoning has been 

defined as “cognitive activities involved in coordinating two varying quantities while attending 

to the ways in which they change in relation to each other” (Carlson, et al., 2002, p. 354). Thus, 

these studies revealed student difficulties in attending to how two quantities change in tandem; 

however, they did not address how students come to conceptualize quantities when solving 

applied problems. If students are to conceive of function relationships between quantities and 

covariation is composed of mental actions “on” quantities, then the cognitive processes of 

conceptualizing quantities and their relationships have significant implications relative to student 

reasoning. 

Quantitative reasoning (Smith III & Thompson, 2008; Thompson, 1989) offers a theory 

that emphasizes a learner conceiving of quantities in a manner that enables reasoning that we, as 

educators, would call mathematical. Quantitative reasoning refers to the mental actions of an 

individual conceiving of a situation (e.g., a runner in a race), constructing quantities of his or her 

conceived situation (e.g., time elapsed or distance ran), and both developing and reasoning about 

relationships between these constructed quantities (e.g., a relationship between distance ran, time 

elapsed, and average speed). This mental structure that is created is then a foundation from 

which the student can reflect upon to develop mathematical understandings and reasoning. 

A quantity, as described by quantitative reasoning, is a conceived attribute of something 

that admits a measurement process, where this “something” could be an image of a situation 

interpreted from a problem statement or a mathematical object (e.g., a graph), admits a 

measurement process (Smith III & Thompson, 2008). By this definition of quantity, a quantity is 

a cognitive object. That is, a quantity is conceived of (not about) and this conception consists of 

an identified object of a situation and an attribute of the object that has some explicit or implicit 
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measurement process.2 This definition of quantity implies that one has cognitively constructed an 

object or objectified a phenomenon that has attributes that can be measured. This cognitive 

distinction of a quantity stems from the stance that an individual’s experience is completely his 

or her own. For instance, an individual could conceive of a quantity such that the conception 

includes or does not include the ability to imagine the quantity varying.  

Thompson (1989) further defines quantification to be the process by which one assigns 

numerical values to attributes. In order for an individual to comprehend a quantity, the individual 

must have a mental image of an object and attributes of this object that can be measured (e.g., a 

car in a race with various attributes), an implicit or explicit act of measurement that produces the 

quantity (e.g., measuring distance traveled), and a value, which is the result of that measurement. 

It is in this last characteristic that the process of quantification occurs, the process of mapping a 

result of measurement to the characteristic. The result of identifying a number as a measurement 

of an attribute is said to be a value, opposed to be a number. 

It is necessary to briefly describe what the term “result” (of measurement) refers to when 

describing the role of mapping a result to a characteristic. If taken literally, the term result 

implies an actual number (e.g., “3.3”). However, result is used here in a more general sense. 

Result can be used to reference both determined and undetermined magnitudes. In addition to 

referring to an explicit magnitude such as “3.3,” result could refer to an imagined magnitude. For 

instance, in the process of measuring a quantity, it is possible that one may not have the 

                                                
2 An implicit or explicit measurement act implies that it is not actually making the measurement 

that results in a quantity. Rather, it is conceived ability to make the measurement, whether or not 

it is carried out, that results in a quantity. 
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necessary physical tools to measure the quantity but mentally they are able to imagine the 

measurement being made and resulting in “3.3” of something. 

Additional definitions of use are a quantitative operation and a quantitative relationship. 

A quantitative operation can be defined as the conception of two quantities being taken to 

produce a new quantity. A quantitative relationship is the image of three quantities, two of which 

determine the third by a quantitative operation. 

With these definitions in place, Thompson (1989) has defined quantitative reasoning as 

the analysis of a situation into a quantitative structure, that is, a network of quantities and 

quantitative relationships. According to Thompson (1989), Quantity-based arithmetic consists of 

quantitative reasoning, determination of appropriate operations (inferred according to 

relationships among quantities) to calculate quantities’ values, and the propagation of 

calculations. Quantity-based algebra is described as the same as quantity-based arithmetic, 

except representations of situations are under-constrained in terms of quantities’ values (i.e., 

there is not enough numerical information to propagate calculations), some value or values are 

represented symbolically, and formulas are propagated instead of values being propagated.  

In general, quantitative reasoning stresses the importance of students conceiving of 

situations and measurable quantities of a situation. Although each individual in a classroom 

develops understandings and images that are completely unique to that individual, this is not to 

say that students cannot develop understandings and images that are consistent with the 

instructional goals. Thus, instruction must account for the initial development of situations and 

quantities that the students are to reason about such that the images held by the students enable 

reasoning consistent with the instructional goals (e.g., covariational reasoning and modeling). 
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Enabling algebraic reasoning and covariational reasoning also has the potential to 

influence reasoning with regards to the conception and use of formulas and functions. Algebraic 

reasoning, and specifically formalizing algebraic reasoning, is reliant on the need of formulas, as 

formulas are often intended to generalize reasoning and relationships. In other words, formulas 

are used to fit and describe a situation in a generalized manner. Allowing students the 

opportunity to immerse in a situation in which they can conceptualize quantities and their 

relationships enables formulas and functions to emerge in a way such that they describe a 

conceived situation. Note that a process conception of function can somewhat “come free” 

through this perspective. With an image of a situation developed that includes how two 

quantities covary, and a function or formula that is a reflection of this image, a student has the 

foundations from which they can understand that the function involves “a dynamic 

transformation of quantities according to some repeatable means that, given the same original 

quantity, will always produce the same transformed quantity” (Harel & Dubinsky, 1992b, p. 85). 

Furthermore, with a properly developed image of a situation, the foundations are placed for a 

“self-evaluating” view of function that supports the ability to coordinate entire intervals of inputs 

and outputs. As a result from a mental model that includes covariation of the two quantities 

already being in place, the formula or function can be conceived in a manner such that it 

formalizes the covariation of the two quantities. 

Methods 

Subjects and Setting 

 The subjects for this study were six undergraduate college algebra and precalculus students 

from a large public university in the southwest United States. All subject participation was 
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voluntary and each subject was given monetary compensation for participating. All six subjects 

were 18-25 years of age and full-time students. 

 The classrooms from which the students were drawn was part of a design research study 

where the initial classroom intervention was informed by theory on the processes of 

covariational reasoning and select literature about mathematical discourse and problem-solving 

(Carlson & Bloom, 2005; Carlson, et al., 2002; Clark, Moore, & Carlson, accepted). The 

instructor of each class was the first author of this report. The classroom instruction consisted of 

direct instruction, whole class discussion, and collaborative activity. Each module’s design was 

based on a conceptual analysis of the cognitive activities conjectured to be necessary to develop 

understandings of the module’s topic. Specific topics of focus were developing conceptual 

understandings of rate of change, proportionality, functions, linear functions, exponential 

functions, logarithmic functions, rational functions, and trigonometry (at the precalculus level). It 

is noted that enrollment in the courses was voluntary and, upon enrollment, the class sections 

were not distinguishable from other sections at the university. 

Data Collection and Analysis Methods 

The researchers conducted clinical interviews with multiple students that consisted of 

tasks intended to gain insights to the subjects’ quantitative and covariational reasoning abilities. 

The clinical interviews conducted followed the methodology described by Clement (2000) and 

Goldin’s (2000) principles of structured, task-based interviews (e.g., four stages of free problem-

solving, suggesting heuristics minimally, guiding the use of heuristics, and exploratory, 

metacognitive questions). Each subject was prompted by the interviewer to read each problem 

aloud and asked to explain his or her thinking at various times when solving each task. This 

interview approach allowed a method of gaining insights to the knowledge structures and 
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reasoning processes of the subjects through an open-ended questioning technique. This was very 

important in the investigation of a subject’s quantifying processes, as these processes can often 

have the tendency to be strictly cognitive actions, which are not typically revealed in a classroom 

setting or collected student work. In order to promote behaviors that can be used to infer the 

cognitive actions of the subjects, a talk-aloud approach was included in our design of the 

interviews. This approach generates insight into the mental processes being performed by the 

subjects through the promotion of verbalizing their approach to the tasks at hand (Carlson & 

Bloom, 2005). 

The data collected was analyzed following an open coding approach (Strauss & Corbin, 

1998) with an attempt to identify emerging behaviors relative to quantifying situations. These 

discrete instances believed to reveal insight into a student’s conception of quantities were then 

analyzed in an attempt to determine the mental actions that contributed to the emerging 

behaviors. The mathematical constructions and interactions that occurred between the subject 

and interviewer were examined in an attempt to model and understand the thinking of the 

subject. Mathematical thinking is dependent on mental operations and thus the goal was to infer, 

based on actions, what mental operations contribute to the behavior of the student. This data 

analysis approach has been described as performing a conceptual analysis of the data in an effort 

to accurately portray the thinking that lead to written or verbal product (Thompson, 2000). 

Results 

Analysis of the students’ problem solving behaviors and inferred thinking on two tasks 

are provided, followed by a summary of overall findings. The difficulties and non-routine nature 

of the subjects’ problem solving processes offered insight into the subjects’ abilities to 
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conceptualize and reason about quantities that were related and covaried in a dynamic 

relationship. 

The Box Problem (Q1) 

Starting with an 11” x 13” sheet of paper, a box is formed by cutting equal-sized squares from 

each corner of the paper and folding the sides up. 

Write a formula that predicts the volume of the box from the length of the side of the cutout. 

 

When first engaging in Q1, all subjects participated in some use of heuristics. This ranged 

from drawing diagrams to using the actual paper that the task was printed on to discuss the 

situation. As an example, one subject (Travis) initially oriented himself to the problem by 

drawing a picture of a piece of paper (Figure 1) with which he denoted the square cutouts on the 

piece of the paper. As he drew and labeled his diagram, he discussed the diagram (Table 1).  

 

Figure 1 – Travis’ Drawing of the Box 
Table 1. 
1 

2 

3 

4 

5 

6 

7 

Travis: Uh, I'm drawing the corners that are going to be cutout so they are equal 

sides. So, I will label one of the sides of the cutouts as x, and, uh, it's 11 by 

13, so I'll label that (labeling length and width of the paper). Um (pause) a 

formula that predicts the volume of the box. The volume of the box is length 

times width times height (writing). Um (pause) so we would take the length, 

which is 13, times 11, which is the width, and then the height is x, whatever 

the side of the length of the cutout is. And. uh, that will be the volume. 
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In this excerpt, Travis initially created a diagram to orient himself to the problem 

situation. As Travis labeled his diagram, he denoted the cutout and also the original length of the 

width of the 11” by 13” paper (lines 2-3). After stating what appeared to be his identified goal of 

the problem, “a formula that predicts the volume of the box” (line 3), Travis identified the 

general formula for the volume of a box (line 4) and then attempted to relate this to his conceived 

box (lines 5-7). However, he used the original length and width of the paper, a static 

measurement, as the length and width of the box. Although he appeared to identify the 

relationship between the height of the box and the cutout (lines 5-7), his response suggested that 

his conception of the length and width of the box did not include the proper relationship with the 

length of the cutout. Rather, his conception of length and width of the box was the fixed 

measurement of the original length and width of the paper. This misconception is further 

illustrated as the interview continued (Table 2). 

Table 2. 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Int.: Ok, so that's the volume of what then? 

Travis: The box from the sheet that you originally had taken the cutout the corner of 

and folded up. 

Int.: Ok, ok, so what's the 13, the 11, and the x represent again then? 

Travis: The 13 is the length of the paper, 11 inches is the width of the paper, a x is 

height of the cutout from a corner. 

Int.: Ok, so that's the height, so why does that end up being the height of the box? 

Why is the cutout... 

Travis: Um, because when you take this away from the paper and you fold this up, say 

we took that out. This length would be the same as this length (referring to the 
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11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

cutout and height), the height. When you would fold it up it would be the same 

as the length of the cutout. 

Int.: Ok. 

Travis: So if you fold it up, then it goes up, which would be the height. 

Int.: Ok. So what are the, what are the various quantities of this situation that we are 

working with? 

Travis: Um, quantity of, number of inches for the length, number of inches for the 

width, number of inches for the height (tracing the full dimensions of the 

paper). 

Int.: Ok. So what do the 13 and 11 represent then again? 

Travis: Number of inches of length of the side of the box, 11 is the number of inches of 

the width of the side of the box, and x is the number of inches in the height of 

the box. 

During this interaction, Travis discussed the height of the box as a varying quantity that 

was equal to the length of the side of the cutout (lines 2-3 & 9-12), an image that appeared to 

include an image of the construction of the box relative to this dimension. His apparent 

understanding was revealed when he explained, “you take [the cutout] away from the paper and 

you fold this up… the height. When you would fold it up it would be the same as the length of 

the cutout.” However, Travis did not appear to conceive of the proper measurements of the 

length and width of the box and their relationship to the original sheet of paper and the length of 

the cutout, as revealed by him referring to both the length and width of the box and the length 

and width of the paper as 13 inches by 11 inches (lines 5-6 & 21-23). Instead, it appears that 

Travis had an image of a box with a static base but a height that could vary. Thus, it appears that 
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the dimensions of length and width were objects in this situation, with both the length and width 

of the paper and box being the same objects. 

When working Q1 (with an 8.5”x11” paper), and similar to Travis’ actions, Matt first 

attempted to describe how the paper related to the constructed box. However, rather than 

drawing a representation of the situation, Matt chose to use the paper that the task was presented 

on to discuss the constructed box (Table 3). 

Table 3. 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Matt: The length is going to be this (pointing to the length of the paper), the 11 inches, 

the width is going to be 8 inches (pointing to the width of the paper), and the 

depth, or height, is going to be x 

Int:   Ok. 

Matt: (Pause) So write a formula that predict (long pause). So then, if you had, if you 

had like, if you say the cutout was 1 inch, so that would mean, that would mean, 7 

times 10 times 1. Because you know that if 1 inch has been cut off, or if .5 inches 

have been cut off, because .5 .5 (pointing to the two corners of the paper), this 

would be .5. 

Int:   Ok, so now why would that be .5 then? 

Matt: Because you’re cutting off, if the width, if the width is 8, and, if we know that 

before the cutout, oh my...the width is 8.5. 

When using the 8.5” by 11” paper to describe the width and length of the box, he referred 

to the same measurements as the width and length of the paper (he also referred to the width 

incorrectly, using 8 inches rather than 8.5 inches) (lines 1-2). Thus, it appears that he had not 

conceived of the proper measurement processes of the length and width of the box relative to the 

cutout. Next, Matt decided to use a specific cutout of 1 inch to discuss the dimensions of the 
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resulting box rather than a general formula (lines 6-8). When first describing the resulting box, it 

appears that he had reconceptualized the measurement processes of the length of the box and 

width of the box relative to the cutout (lines 6-7). However, he first described the situation 

incorrectly, as revealed by his calculating the length and width using a cutout of .5 inches rather 

than 1 inch. Again, he refined his image of the situation and his conceived relationship between 

the measurement of the length of the box and the length of the cutout, and then he corrected 

himself by stating that the cutout is .5 inches (lines 8-9). Finally, he caught his mistake of using 8 

inches as the original width, rather than 8.5 inches (lines 11-12). 

In general, it appears that Matt continually refined his image of the situation during this 

interaction, including the various measurement processes of multiple quantities in relation to 

other quantities. It appears that Matt did not initially conceive of a measurement process for the 

length and width of the box. Instead, he saw the length and width of the paper as fixed values 

that were useful for computing the volume of the box. His inability to conceptualize these two 

quantities as distinct from the original sheet of paper indicates that he did not view the length and 

width of the box as assuming various measurements. As the interaction above revealed, Matt 

used a crude representation of the situation by quickly describing, but not recording, the 

dimensions of his conceived box using the 8.5” by 11” sheet of paper. However, as he worked 

through the task and explained his reasoning, he refined his image of the box to include the 

correct quantitative relationship of the quantities of a specific box and the length of a cutout.  

As revealed in both of the interactions with Matt and Travis, a situation that may be 

interpreted as a simple context by a teacher offered much conceptual difficulty to both subjects. 

The finding that the subjects did not construct a correct image of quantities and their 

relationships was common across all six subjects. For instance, one subject referred to the length 
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of the paper, width of the paper, length of the cutout, length of the paper, and width of the paper 

as “the length.” Although this could easily be interpreted as a poor choice of wording on the 

subject’s part, the subject’s difficulties in solving the problem revealed that she likely had not 

imagined quantities and their variation; nor had she developed an image of the relationships 

among quantities in the problem context. Thus, the student appeared to view each dimension as 

an object. This was followed by her interchanging various dimensions as she continued working 

the task, implying she had not cognitively distinguished the various “lengths.”  

As each subject continued to work each task and receive probing from the interviewer, 

each subject found the need to refine his or her image of the situation. Once this refinement was 

completed, each subject then had minimal difficulty determining the correct volume formula and 

describing the formula by referencing the quantities they conceived and relationships between 

these quantities. 

As an example of a subject refining his image of the situation, consider the actions of 

Travis immediately after the interaction in Table 2. Travis was first asked about the relationship 

between the sides of the box and the sides of the paper. Immediately, Travis stated that he “did it 

wrong” and noted that “cutting out a piece” would “reduce the length and the width,” implying 

that he had altered his image of the situation. Then, unprompted, he described how this 

understanding would result in changes to his characterization of the dimensions of the box and 

hence the formula for the volume of the box (Table 4). 

Table 4. 
1 

2 

3 

Travis: So, the actual, the actual length would be 13 minus 2 x, because there's two 

cutouts on the side, so you have to multiply the x by 2. So that would be 

length, width would be 11 inches minus 2 x, and the height would be x again. 
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4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

(pause) 

Int.: Ok, so say again real quick, why the 13 minus 2 x, and 11 minus 2 x. 

Travis: Um (pause) because on one side of the paper, when you would take the 

cutouts, you would take two cutouts and one cutout is x, is the length of one 

side of the cutout (pointing to the cutout in the diagram). So, since you're 

taking two away, you'd have to subtract it by 2 x's, by two cutouts. And the 

same thing with the width, two times also. 

Int.: Ok, so what would the resulting volume be then, of the box? 

Travis: Um, it would be the length (pause) times the width times the height. 

Int.: Ok, so what does x again represent here? 

Travis: That's, uh, the length, or the number of inches in the side of a cutout of the 

paper. 

As a result of his new, and accurate (from our observing perspective), characterization of 

the length and width of the base of the box as varying with the length of the side of the cutout, 

Travis was able to correctly construct the algebraic expressions for the length and width of the 

box (lines 1-3 & 6-10). Furthermore, it appears that he had conceived of these algebraic 

expressions as representations of measurements of his conceived situation. When describing why 

! 

13" 2x  and 

! 

11" 2x  would represent the length and width of the box, respectively, he described 

the terms of these expressions in relation to his new image of measurements of the physical 

situation. For instance, he described that subtracting by 2 x’s resulted from taking two cutouts 

away, where x represented the length of one side of the cutout (lines 7-9). Also, Travis 

understood x as representing the number of inches of the length of the side of a cutout (lines 14-

15). Thus, it appears that Travis had quantified the length of the side of a cutout and also had 
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developed a correct understanding of the relationships between the dimensions of the box and 

this measurement. Travis apparently developed this understanding after his realization that the 

cutout length would reduce the length and width of the box base. He also appeared to be able to 

covary the cutout length with the box’s base length, base width, height and volume. Thus, 

Travis’ constructed quantitative structure included the proper relationships between the various 

quantities of the situation and how they covaried. 

Overall, Q1 reveals the importance of a problem solver having the correct mental image 

of a situation when attempting to reason about quantities and their relationships (e.g., developing 

quantitative relationships/structures), including the development of meaningful mathematical 

formulas that characterize those relationships. In the case of both subjects presented above, the 

creation of an expression to represent the volume was driven by their images of the situation. 

Hence, with incorrect images of the situation, incorrect relationships were constructed and 

incorrect algebraic representations for the volume were produced. It is also important to note that 

the subjects had little difficulty creating and explaining their incorrect formulas, and thus the 

mistakes appeared to be solely lying within their constructed image of the situation and resulting 

relationships (e.g., lacking an appropriately quantified length and width of the box). When their 

mental image of the situation was reconstructed, the subjects easily altered their volume 

expressions and were able to describe the formulas produced in terms of the physical 

relationships and measurements. That is, it was not the case that the subjects lacked the 

reasoning abilities to create the proper formulas; rather, the formulas they created, correct or 

incorrect from our point of view, were directly a result of their constructed image of the 

situation. 

The Ferris Wheel Problem (Q2) 
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Consider a Ferris wheel with a radius of 36 feet that takes 1.2 minutes to complete a full 

rotation. April boards the Ferris wheel and begins a continuous ride on the Ferris wheel. If the 

platform to board the Ferris wheel is 8 feet off of the ground, sketch a graph that relates the 

total distance traveled by April and her vertical distance from the ground. 

Q2 provided additional insights into the subjects’ quantitative reasoning abilities. 

Prompts for them to produce and explain their graphical representation of the covariation of 

conceived quantities provided additional insights into the subjects’ abilities to reason 

dynamically about quantities and their values. We also note that only three of the subjects were 

given this task during their interview. When first attempting Q2, none of the three subjects drew 

a diagram of the situation to discuss their reasoning. Each individual correctly identified the 

minimum vertical distance from the ground as 8 feet because of the platform. However, Charles 

explained that 72 feet was the maximum vertical distance (the diameter of the Ferris wheel), 

while Brad explained that 36 and 42 feet was the maximum vertical distance (the radius of the 

Ferris wheel and an incorrect addition of the radius and 8 feet), and Travis explained that 64 feet 

was the maximum vertical distance (the difference of the diameter of the Ferris wheel and the 8 

feet). As the subjects continued to work the problem each eventually identified the correct 

maximum value for the vertical distance, while also referencing the quantities of the initial 

vertical distance and the diameter of the Ferris wheel. Thus, it appears that although all three 

subjects identified the initial height stated in the problem statement, they did not conceive of this 

height in relation to the location of the Ferris wheel and the individual’s height from the ground. 

In producing a graph, all three subjects drew graphs that correctly characterized April’s 

increasing and decreasing distance from the ground as the distance that she traveled around the 

circumference of the Ferris wheel increased. However, the concavity of all three subjects’ graphs 
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of the covariation of April’s distance from the ground and her distance traveled was incorrect. 

When asked to verbally explain the meaning of his or her graph, each subject explained that as 

the total distance increased, April’s vertical distance from the ground increased and then 

decreased. Even when prompted they did not explain how these two quantities’ values changed 

in tandem beyond explaining April’s distance from the ground increasing or decreasing as her 

distance traveled increased. Thus, it appears that at this point in their solutions, their graphs were 

based solely on a directional covariation of the two quantities. Important to note though was that 

each subject did refer to the distance traveled as increasing, inferring that they had identified this 

attribute of the situation. This is important as the graph could be produced in an iconic manner 

by transferring April riding “up” and then “down” the Ferris wheel without explicitly reasoning 

about her distance traveled.  

After each subject was asked to explain why he drew a “curved” graph, they all 

responded with a focus on the amounts of change of the total distance and vertical height. As an 

example Charles first drew a graph that was concave down for the first three-quarters of a 

revolution after April boarded at the bottom of a Ferris wheel. His subsequent explanation 

described that his graph was concave down because, “the change in output is decreasing, as, for 

every equal amount of input (denoting changes of input and output on his graph).” Charles’ 

explanation was correct relative to the concavity of his produced graph. Yet, the graph itself was 

incorrect relative to the situation over the first quarter of a revolution (e.g., concave down 

opposed to concave up). Thus, it appears that his graph was driving his description of the 

situation. In response, the interviewer asked Charles to explain the shape of his graph using the 

Ferris wheel (Table 5). 

Table 5. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Charles:  So, as the total distance is increasing (tracing the arc-length), we 

notice that height is increasing but for every successive change of 

total distance (making marks at equal changes of arc-length), lets say 

right here it’s eight, well if I drew a bigger one, I’d be able to show it 

more precise.  

Int: Here, go ahead and, uh, I’ve got some extra pieces of paper. Go ahead 

and if you want to draw it on there somewhere (handing him a sheet 

of paper) a little bigger. 

Charles: (Drawing a larger circle and drawing a vertical-horizontal crosshair 

in the middle of the circle) So, as, I guess we can assume this is 

ninety degrees (referring to the compass) we can make an angle 

(attempts to use protractor on compass)… 

Int: So what are you trying to do right now? 

Charles: Well I see, this thing moves (referring to the compass), I’m trying to 

show that, um, I’m trying to make, well I could use the protractor, 

I’m just trying to change, show successive change in input. 

Int: Could you use the Wikki Stix to do that? 

Charles: Well, actually, yes I can. 

Int: So, you’re trying to show successive changes in what? 

Charles: In input, which would be the total distance (marks a distance on a 

Wikki Stix mumbling to himself, then marking off successive arc-

lengths on the circle). Ok, so, for every change in total distance, right 

here (referring to arc-length), he, well, hmmm. 
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24 

25 

26 

27 

28 

29 

30 

Int: What makes you go hmmm? 

Charles: Because I was thinking the last time I did this represented right 

(referring to the top-half of the circle), hmm. 

Int: So what’s making you go hmm now? 

Charles: Because it seems as total distance increases (referring to the arc-

length), the actual change in the height is increasing instead of 

decreasing. 

In this excerpt, Charles reiterated the directional covariation of the total distance traveled 

and the height of the individual (lines 1-3). Next, in an attempt to explain the curvature of his 

graph, Charles described that he wished to use successive changes of input, which he identified 

as the distance traveled (line 20), and that he could do this by segmenting the arc-length of the 

Ferris wheel (lines 9-12 & 14-16). Then, after marking off equal intervals of distance traveled on 

his diagram of the Ferris wheel, Charles questioned his original graph (lines 20-23). This resulted 

in Charles describing that the changes in height should be increasing rather than decreasing (lines 

28-30). 

In this case, Charles’ refined image of the situation was the basis for his explanation 

relative to corresponding amounts of change of the quantities and how these would be reflected 

in the graph. On the other hand, Charles’ first description of the situation relative to 

corresponding amounts of change of the quantities was driven by the graph, as opposed to his 

image of the situation. That is, he produced a graph based on a directional image of the situation 

and then interpreted the graph relative to amounts of change. In both cases, his description of his 

graph was correct. However, in the first instance, his graph appears to have shaped his 

description of the covariation of the two quantities; in the second instance, his constructed 
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contextual image of the relationship between the two quantities was the basis for his reasoning 

when he constructed his graph and explained the covariation of the quantities characterized by 

this graph. Thus, similar to the observations of the subjects when responding to Q1, the 

“incorrectness” of Charles’ first graph was not a result of him having weak reasoning abilities. 

Rather, in this case, it was the focus of Charles attention that influenced his description of the 

relationship between the quantities. 

These behaviors by Charles highlight the role of quantitative reasoning and covariational 

reasoning in representing the relationship between two quantities. In order to represent the 

(correct) relationship between two covarying quantities, a student must first construct an image 

of the situation, including attributes of the situation that can be quantified such that these 

conceptions enable the student to correctly constructing and representing the relationship 

between quantities. Although Charles correctly identified the directional relationship of distance 

traveled and distance from the ground, his image of the situation did not initially include a focus 

on the covariation of the amounts of change of the distance traveled and the amounts of change 

of the distance from the ground. Charles’ actions also revealed the difficulty of covarying two 

quantities’ values. Charles’ descriptions remained attentive to the quantities he was relating, but 

he was not able to produce a correct graph (from an observer’s perspective) until he focused on 

specific intervals of arc-length relative to the contextual situation. Thus, similar to the findings 

from Q1, in this case it was not an inability to engage in the reasoning needed to successfully 

complete the task. Rather, his products were tied to his incorrect image of the situation, which he 

eventually refined over the course of completing the task. 

Summary 
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 The images that the subjects constructed of each of the task situations appeared to 

influence the subjects’ subsequent actions and products. As one example, when responding to 

Q1, multiple subjects did not initially conceive of the length and width of the box as differing 

from the length and width of the paper; nor did they develop an image of the quantitative 

relationships between the length and width of the box, the length of the cutout, and the length 

and width of the paper that included an image of their covariation as the length of the side of the 

cutout took on different values. In the absence of this image, it is unreasonable to expect the 

subject to construct a correct and meaningful algebraic or graphical model of the situation. 

 Although the subjects’ initial images of the situation were not consistent with the 

intended situation, each subject was able to continually refine her or his image to produce correct 

solutions and provide meaningful descriptions of the quantities and their relationships. This 

finding would not be revealed in a typical testing or homework setting, and emphasizes the 

necessity of curriculum and instruction to support students’ in learning to identify and 

conceptualize relevant quantities and construct relationships between these quantities before 

formalizing these relationships through the use of formulas.  

Discussion and Implications 

This research provides information about the modeling behaviors of students and should 

therefore be useful to curriculum designers and instructors. Even though it is common practice to 

ask undergraduate mathematics students to work problems set in contextual situations, the 

curriculum and instruction rarely attends to the development of students’ ability to conceptualize 

the relevant quantities and their relationships. This research suggests that supporting students in 

learning to create their own quantitative structure of a problem context could be extremely 
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valuable to their success in creating formulas and providing meaningful descriptions of their 

solutions and graphs. 

In order to promote students developing cognitive images of situations such that these 

images promote mathematical reasoning, gaining further insight into students’ images of 

quantities and relationships between quantities will be an important focus of our future research. 

As discussed previously, an understanding of a situation that includes a coherent image of 

quantities and their relationships can possibly promote algebraic (mathematical) reasoning. Thus, 

it is important to not only investigate the mental actions that take place as students conceive of 

problem situations and problem goals, but also investigate how these conceptions can influence 

reasoning as students attempt to “formalize” their conceived relationships. Students may benefit 

if curriculum designers and teachers become more aware of these mental processes and their 

importance. Mathematical models should be a reflection of the situation, or a way of formalizing 

the relationships of the situation, where these relationships are developed cognitively by the 

solver and then formalized. If algebraic models are presented without properly developed 

cognitive models of the contextual situation under investigation, the algebraic model will likely 

fail to be meaningful to the students; and if we expect students to find mathematics as a way to 

reason about the experiential world, then it is necessary that mathematical representations be 

meaningful relative to the experiential world, or this expectation is highly unrealistic. 
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