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This paper offers a new way to prove Kepler’s 
laws using mathematical, computational, and 
visualization tools. We hope that it can be 
utilized in math and science courses. Our work 
has historical significance. As 9th graders, we had 
not taken any physics courses and we were not 
fully knowledgeable about laws of universe that 
govern planetary motion. That is not different 
from the situation of Kepler; as no one quite 
knew how gravitational forces worked until 
Newton came. Kepler had access to data 
compiled by Tycho Brahe and he looked for 
patterns [1]. We had access to modern tools and 
we looked for miracles! We learned how to 
transfer visuals images and data from simulation 
software (Interactive Physics) to geometrical 
software (Geometer’s Sketchpad) to measure 
angles, distance, and areas of triangles needed for 
the proofs. Through Excel and simple algebraic 
steps (new = old + change), we learned how to 
manually construct our own simulations as an 
alternative way to get data needed for the proofs. 
To compute the “change” we needed some 
knowledge of the gravitational force that governs 
the orbital motion. While it was initially 
frustrating to learn new tools, demonstrations by 
our science teacher, Sean Metz, via a 
SmartBoard, eased this process. Realizing what 
Kepler would have done if he had such tools; we 
quickly learned to appreciate the opportunity in 
our hands. In the end, we did not make a 
discovery in physics, but we certainly discovered 
that physics was not a threatening or boring 
subject. We also discovered the role of 
mathematics in physics. The foreboding nature of 
complicated physics was abolished and we all 
looked forward to taking physics classes. 

This paper is based on our experience in a math 
and science competition conducted by SUNY 
Brockport. Our project received the First Place 
and Best Paper awards. We are grateful to our 
teachers, the National Science Foundation, and 
the Computational Math, Science, and 
Technology Institute (www.brockport.edu/cmst). 
 
Kepler’s Laws [2]: 
1. Orbit of a planet around the Sun is an ellipse 
2. Planets sweep out equal areas in equal times 
3. The square of the period (time to make a 

round) is proportional to the cube of orbit’s 
semi-major axes. 

 
Collecting Data with Interactive Physics 
Here, we describe how Interactive Physics (IP) 
can be used to extract data on planetary motion 
to examine validity of Kepler’s laws. IP is a 
commercial product, but demo versions are 
available at www.interactivephysics.com. Our 
school has a site license for it, but for those that 
do not have access, we will also illustrate below 
how the same data can be extracted from Excel 
using mathematical formulas and Newton’s laws. 

IP has a two-dimensional graphical interface. 
There is no need to remember laws of physics. 
One can even change the laws and their intensity 
through a drop-down menu. Objects of different 
shapes (circular, sphere, square) and materials 
(wood, steel, etc) can be created and tracked (via 
velocity and location graphs). Buttons can be 
created for control variables. Units can be scaled 
down to fit the window. Object properties can be 
viewed and edited easily.  

To model the solar system through IP, one 
needs the solar data listed below [3]. To observe 
Kepler’s 1st and 2nd laws, it would be adequate to 
construct only one planet around the Sun.  

Mean Orbital 
Velocity 

Planets 

Km/s mph 

Mean 
Distance to 
Sun (km) 

Mass 
(kg) 

Mercury 47.89 1.07x105 5.83x107 3.30x1023 
Venus 35.03 7.82x104 1.08x108 4.89x1024 
Earth 29.79 6.66x104 1.50x108 5.90x1024 
Mars 24.13 5.39x104 2.27x108 6.42x1023 
Jupiter 13.06 2.91x104 7.78x108 1.90x1027 
Saturn 9.64 2.15x104 1.43x109 5.68x1026 
Uranus 6.81 1.52x104 2.87x109 8.85x1025 
Neptune 5.43 1.21x104 4.50x109 1.02x1026 
Table 1: Characteristics of our solar system [3]. 
Sun’s mass is 1.89x1030 kg. 



Moving Data into Geometer’s SketchPad 
The orbital data taken at equal time intervals 
through visual tracking within the IP window can 
be screen dumped into the Geometer’s Sketchpad 
(GSP) for data analysis. This is done by a) 
clicking on the PrintScreen button and capturing 
the visual data while still within the IP, and b) 
pasting the captured data into the GSP window 
after closing the IP window. As seen in Fig. 1, 
the copied IP window is embedded within the 
GSP window. For some planets, orbits seem 
more elliptical than others. The visual data from 
IP shows a planet’s position at equal intervals. 
Once within GSP, these positions can be 
highlighted as data points. The GSP labels these 
points (A, B, C,..) as shown in the picture below. 
To get the area of a triangle, all three corner 
points need to be highlighted. Figure 1 shows 
calculated areas for different triangles. It is clear 
that these areas are numerically the same within 
the margin of errors (2nd law). Some of the 
variations are due to the lost area underneath a 
triangle’s base when it does not follow the arc. 

 

   
Figure 1: Computed areas for orbital tracks from IP. 
 

Similarly, a screen dump from an IP simulation 
of multiple planets into the GSP allows 
observation of Kepler’s 3rd law, which states that 
for each planet the square of the period (T2) is 
proportional to R3; or (T1/T2)2 = (R1/R2)3 when 
we consider two planets. Figure 2 shows orbits of 
3 planets that can be used to examine this 
relation. Periods (T1, T2, and T3) for planets’ 
orbits were measured as 55, 104, and 289 (days) 
within the IP while the semi-major axises (AB/2, 

AC/2, and ED/2) were calculated by the GSP.  
The calculations shown on the figure have been 
generated by the GSP for each pair of these 
planets. The calculations on the left (R1/R2)3 are 
from GSP while those on the right (T1/T2)2 are 
from IP. Ratios match verifiably. 

  

 
Figure 2: Examining Kepler’s 3rd law via GSP 
 
Verification and Analysis by Excel 
Mathematical Background: For schools with no 
access to IP and GSP, there is a way of repeating 
our experiment using Excel. Many people use 
Excel just to keep track of their checkbooks or to 
convert numerical data into graphs. We 
discovered that Excel could be a vehicle for us to 
understand details of modeling by tools such as 
IP. While we enjoyed running many IP 
simulations of our solar system, we were slowly 
drawn into a curiosity to understand the 
underlying mathematics and science. Excel gave 
us a chance to understand the complexity of the 
calculations that IP did in a matter of seconds. It 
taught us the hardships of manually finding the 
answers and helped us realize how IP technology 
and computational science have made complex 
formulas easier to handle. While IP does not 
require any knowledge of underlying math and 
science, Excel requires algebraic formulas. Yet, 
the needed formulas are not complex at all. For 
example, the entire field of simulations is based 
on using a simple relation: new= old + change. 
What this means is that tomorrow’s temperature 
can be predicted as the sum of today’s 
temperature and the amount of change expected. 
Another example could be: the distance to be 



traveled by a car in the next hour can be stated as 
the sum of the current distance plus the amount 
of change expected in the next hour.  

Let’s establish a notation for the rest of our 
mathematical demonstration. Since the data we 
transferred from IP into GSP involved locations 
(r) and velocities (v) of planets as a function of 
time (t), we can compute them via rnew = rold + 
dr and vnew= vold + dv, where dr and dv represent 
changes in r and v. The key here is, of course, 
how to calculate the changes dr and dv. We need 
to know what governs the change in our 
environment and that is where science comes 
into the picture. 

Another notation we need here is to consider 
both the distance (r) and the velocity (v) in terms 
of their two-dimensional representations as 
follows: 

    y            r                                 vx              v 
                         r2 = x2 + y2     

                   x    v2 =(vx)2 + (vy)2                     vy 
 
Scientific Background – Newton’s Laws of 
Motion: While some basic scientific knowledge 
is needed to predict changes in our universe, the 
IP experimentations made this a curiosity for us, 
not a task. Although we had not taken any 
physics courses, our research revealed interesting 
facts that we did not know about our universe. 
We learned that objects attract each other via a 
gravitational force (F), first formulated by Isaac 
Newton [4] as F=G·M·m/r2; where G is a 
Universal Constant and M and m are masses of 
objects separated by distance r. Another 
important discovery by Newton states that, a 
particle (with mass m) subject to such an external 
force (F) would move with acceleration (a) that 
is equal to F/m. What this means is that 
acceleration of an object under the influence of 
an external force (F) is inversely proportional to 
its mass (m): the greater the mass, the less the 
acceleration. Mass of an object can be considered 
as a measure of its resistance to external forces. 
The amount of force needed to accelerate an 
object of 1 kilogram in the amount of 1 meter per 
second is called 1 Newton.  

Putting together these two laws by Newton, we 
find gravitational acceleration (a) to be equal to 

G·M/r2. According to physics, this would reveal 
all that is needed to compute changes in r and v 
within Excel calculations. Consulting our 
everyday culture about driving, we know that 
acceleration is a measure of change in velocity 
with respect to time, which can be interpreted as 
a= dv/dt. And, we also know that velocity is a 
measure of change in distance with respect to 
time as v= dr/dt. From these, we can see that dr= 
v·dt and dv= a·dt. Since the planetary motion in 
IP was in two-dimension, we need two points (x 
and y) to specify planets’ locations, velocities, 
and accelerations in each of these directions. As 
a result, we need to compute: 

xnew = xold + vx·dt  vxnew= vxold + ax·dt 
ynew = yold + vy·dt  vynew= vyold + ay·dt. 

 
                                                      v 
                                         
 

 
 
 
 
 
Figure 3: Relationship between directional 
components of r and a. Here, ax = (x/r) · a and ay = 
(y/r) · a, where a = 1/r2 ·1.26x1014 N·km2/kg [4]. 
 
Excel Computations: Table 2, below, shows a 
partial view of the Excel calculations of the 
above equations for the planet Earth. Initial 
values of x, y, vx, and vy are based on the solar 
data in Table 1. At t=0, we assumed that the 
Earth’s orbital velocity is given by vx=0 and vy= 
29.79 km/s and its position is given by y=0 and 
x= 1.50x108 km, as shown in Fig 3. 

 
t  

(days) 
vx  

(km/hr) 
x  

(km) 
vy  

(km/hr) 
y  

(km) 
0 0.00E+00 1.50E+08 107000 0 

5 -8.71E+03 1.49E+08 1.07E+05 1.28E+07 

10 -1.74E+04 1.47E+08 1.06E+05 2.56E+07 

15 -2.61E+04 1.44E+08 1.05E+05 3.82E+07 

20 -3.47E+04 1.40E+08 1.02E+05 5.05E+07 

25 -4.31E+04 1.34E+08 9.94E+04 6.24E+07 

30 -5.12E+04 1.28E+08 9.57E+04 7.39E+07 

35 -5.89E+04 1.21E+08 9.12E+04 8.48E+07 

40 -6.62E+04 1.13E+08 8.61E+04 9.51E+07 

x 

y r
t=0 

SUN

ax 
a        ay 



45 -7.31E+04 1.04E+08 8.03E+04 1.05E+08 

50 -7.94E+04 9.49E+07 7.40E+04 1.14E+08 

55 -8.52E+04 8.47E+07 6.71E+04 1.22E+08 

60 -9.02E+04 7.39E+07 5.98E+04 1.29E+08 
Table 2: Earth’s orbital motion with Excel. See Fig. 4 
for complete set of data.   
 

Figure 4 shows Earth’s orbital track based on 
the computations in Table 2. It may not be 
obvious that the orbit is an ellipse. It is clear, 
however, that it is not a circle. Both radii in x and 
y directions are different and the center of the 
track is not where the Sun is. Additional 
mathematical work can be done to show the track 
to be elliptical; however, we have seen visually, 
through IP and Excel, the imperfect shapes of the 
orbits as predicted by Kepler long time ago. At 
the time of Kepler, deviations from perfect 
(divine order) met with much resistance that he 
had to go a great length to prove otherwise. 

 
Orbital tracking with Excel

-2
00

.0
-1

50
.0

-1
00

.0
-5

0.
0

0.
0

50
.0

10
0.

0
15

0.
0

20
0.

0

-200.0 -150.0 -100.0 -50.0 0.0 50.0 100.0 150.0 200.0

M
ill

io
ns

Millions

x (km)

y 
(k

m
)

 
Figure 4: Orbital tracking for Table 2 (0<t<400 days). 
 

It is important to note that Excel calculations 
present some variations when the time step (dt) is 
changed. What is shown in Fig.4 may not be the 
most accurate track, but qualitatively it is 
representative of a planet’s orbit. Some planets 
have more elliptically looking orbits. The above 
calculations are given for dt = 5 days, however 
we believe smaller time steps (i.e., dt=1 day) 
would produce more accurate tracks. Although 
we initially took IP and Excel computations for 
granted, the sensitivity of results to the time step 
sparked awareness in us about the accuracy of 

mathematical and computational results. This 
topic of computational accuracy is further 
examined in another paper by the authors.   
 
Conclusion 
Through use of mathematical and computational 
tools such as IP, GSP, and Excel, we have 
observed Kepler’s laws.  Ability to conduct 
controlled experiments on a system far from our 
sight and touch gave us tremendous excitement 
to do scientific investigation. We learned some 
basic laws of physics without taking a course in 
physics. Our curiosity drove us to better 
understand details of mathematical and computer 
modeling embedded in simulation tools such as 
IP. We discovered that Excel is more than a 
spreadsheet program. We hope that our 
demonstrations here can be used in mathematics 
and science courses as an example of how math 
and science can be presented in the same context.  

While Kepler’s work was an important 
historical step leading to Newton’s discovery of 
the gravitational law, Newton’s laws in return 
help all of us understand and verify Kepler’s 
laws. When using tools such as IP, students need 
not to know the Newton’s laws. This enables 
students to study behavior of planets without the 
deep knowledge of physics, or mathematics.  

Computational modeling offers a rare chance to 
integrate mathematics and science education. 
With necessary accuracy and validation, 
computational modeling is also used in scientific 
and industrial research, especially when dealing 
with systems that are too complex to study 
analytically, too expansive to observe, and too 
dangerous to experiment. We agree with a recent 
Presidential report [5] states that CMST is one of 
the most important fields of the 21st Century.  
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