Mathematical ACTS:

Achievement and Collaboration for Teachers and Students

Project Overview

 Mathematical ACTS: Achievement and Collaboration for Teachers andStudents (award \#0226948) is a targeted partnership between University Students (award \#0226948) is a targeted partnership between University of
California Riverside (UCR) and a Southern California school district. The partnership involved pre-service and in-service education of teachers with an emphasis on student mastery of Algebra I content.
The district has a diverse student population of $19,000+$ students (57% are
Hispanic and 5% are African American and has sizeable English Learner Hispanic and 5% are African American) and has sizeable English Learner
$(24 \%$) and Free/Reduce Price Meals (52%) population Only 52% of the (24%) and Free/Reduced Price Meals (52%) population. Only 52% of the
secondary school mathematics teachers have a mathematics major or mathematics teaching credential.
Mathematical -ACTS provided instructional training for grade 4,5 and 6 Mathematical -ACdS scovool mathematics and science teachers. Three
teachers and middle
forms of professional development sought to extend teachers' content knowledge and pedagogical repertoire.
MATE (Mathematics Academy for Teaching Excellence), is a 40 hour workshop for teachers at all levels. Exemplary teaching is modeled and
mathematics is connected to science and other real-world applications. CHAMP (Climbing Higher with the Academy for Mathematics Performance) is a 25 hour lab-school environment. Teachers observe, model and act as peer coaches as they work on new strategies for presenting grade level
math content. Teacher to Student ratios are kept small to allow teachers to test and evaluate their newly learned strategies.
ALIAS (Accelerated Literacy Integrating Algebra and Science) is a $\mathbf{2 0}$ hour set of workshops that give teachers inquiry-based and grade level science exercises linked to state mathematics standards. Teachers work on the
exercises in small peer groups. During the summer, teachers work with exercises in small peer groups. During the summer, teachers work with
students in a lab-school environment (30 hours) to test and evaluate the students in a lab-sch
classroom exercises.

Evidence Based Research Paradigm
Teachers were randomly placed in to either Treatment of Control
groups (stratified random procedure). The 16 elementary schools groups (stratified random procedure). The 16 elementary schools
were paired by demography and mathematics achievement. Schools were paired by demography and mathematics achievement. Schools
within pairs where randomly assigned to "Treatment" (i.e. teacher
were until the following year before they would be eligible for
"Treatment"). In half the schools, pairs were held as controls for the first two years before being assigned to control or treatment status. his guaranteed control population over the first 3 years but
ultimately provided professional development opportunities for interested teachers during the study.
Idealized Control and Treatment Populations within Elementary Schools

> | Treatment | 24 | 48 | 72 |
| :--- | :--- | :--- | :--- |

은 First Half of Schools $\quad \begin{array}{lllll}24 & 0 & 0 & 0\end{array}$
이 Second Half of Schools $\begin{array}{ccccc}48 & 48 & 24 & 0 \\ & - & \sim & \infty & +\end{array}$

Participation was voluntary but participants were compensated with lass materials and for their time. The district encouraged participation by all eligible faculty

Predictions: Indicators of Success
We hypothesized that participating in Mathematical-ACTS teachers would increase their content knowledge and pedagogical repertoire and that this would lead to increased mathematics achievement as measured by student standardized tests.

A Project Success Story

Figure 1: Difference between "Control" (solid lines) and best fit F"Igure 1. Difference between "Control (solid lines) and best it
"Treatment" (stippled lines.). Contro students were assigned a value
of 0 for treatment coefficients. For treatment, the mean of all nonare
zero values of "treatment 6 " for each year and grade multiplied by the
coefficients shown in Table 1 used for treatment students

Figure 2: Top: the percent of students from treatment classrooms Figure 2: Top: the percent of students from treatment classrooms
calculated by considering a student who had been in a 4 th grade
and calculated by considering a student who "ad been in a
treatment classroom are still considered "treatment" students as
per treatment parater per treatment parameterization 5 and 6 (Table 2). Bottom: the

Test scores were slightly higher for students from treatment classrooms. Although the effect size was small, if a student accumulated the benefits of 100 hours of a teacher(s) PD, it is enough to offset the effect of family SES on test scores. Our ability to reach students in grades 4,5 and 6 fell short of the idealized target of 100%. However, the best fit model suggested that, although students were not always in a "treatment classroom" they carry the PD benefits from their teachers with them. The downward trend seen in grade 4 (Figure 2) is due to teacher attrition from the district, indicating the need for sustained PD over time.
Table 1: Longitudinal changes in students' mathematics achievement controlling for significant individual demographic variables
and the effect of Math-ACTS professional development (PD). PD has been parameterized in 6 different ways (see Table 2).

Discussion

We anticipated using the SAT-9 Mathematics exam as a measure of student's
achievement. In 2003, the State adopted a criterion referenced exam of state math standards that is not norm-referenced. To address the issue of growth in the context of our longitudinal design, we needed to include grade level as covariates in our models. The negative slopes seen in table and figure 1 are
an artifact of the manner in which the CST exam is scaled among grades. For example, students generally score lower on the grade six test than they do on the grade five test.
Increased focus on high stakes testing in the State also began in 2003. Many
districts (ours included) initiated a range of workshops to increase test scores, districts (ours included) initiated a range of workshops to increase test scores, in addition to the workshops sponsored by the MSP grant. While this blurs the
distintion between chen distinction between control and treatment, a more important unanticipated consequence was a marked "PD fatigue" among the teachers.
The final challenge was how to model "treatment". Not all teachers
participated in all workshops. The "idealized" treatment roll out (see bottom eft) was overly optimistic. An initial solution was to use a continuous variab
indexed to number of hours of PD in place of a binary "Control/Treatment" parameterization. That solution ignored the fact that our treatment had three distinct attributes of longitudinal impact on students' achievement, as shown in Table 2.

Table 2: Parameterizations of the Mathematical-ACTS PD provided to teachers in relationship to the three hypothesized mechanisms for influencing student
achievement

achievemen

	Impact of Professional Development Maintained with Teacher Over Time		Impact of Professional Development Tied to Hours Completed	
Student Accrues Benefits over Time	YES	NO	YES	NO
YES	Treatment 6	Treatment 5	Treatment 5 Treatment 6	N/A
NO	Treatment 2 Treatment 4	Treatment 1 Treatment 3	Treatment 3 Treatment 4 4	Treatment 1 Treatment 2

We empirically assessed alternate hypotheses for how PD given to teachers translates into student achievement by modeling treatment with different
parameterizations to reflect the different parameterizations to reflect the different assumptions. We modeled treatment
six different ways (Table 3) and used model selection criteria to test among six different ways (
these hypotheses.

Table 3: Sample values based on the six different parameterizations of the Mathematical-ACTS PD							
$\begin{aligned} & \text { Student } \\ & \text { ID } \end{aligned}$	Student's Grade/ Year	Treatment 1	$\begin{gathered} \text { Treat- } \\ \text { ment } \\ 2 \end{gathered}$	$\begin{gathered} \text { Treat- } \\ \text { ment } \\ 3 \end{gathered}$	Treatment 4	$\begin{gathered} \text { Treat- } \\ \text { ment } \\ 5 \end{gathered}$	$\begin{gathered} \text { Treat- } \\ \text { ment } \\ 6 \end{gathered}$
$\begin{gathered} 200400 \\ 04 \end{gathered}$	$\begin{aligned} & \text { Grade } \\ & 4 / 2004 \\ & \hline \end{aligned}$	1	1	20	100	20	100
$\begin{gathered} 200400 \\ 04 \end{gathered}$	$\begin{gathered} \text { Grade } \\ 5 / 2005 \\ \hline \end{gathered}$	0	1	0	40	20	140
200400	Grade	1	1	60	60	80	200

[^0]
[^0]: Principle Investigation Team and Acknowledgements
 Michael Bryant, Cal Arts University and Pl's: Richard Cardullo, UCR Biology, Kathleen Bocian, Michael Bryant, Cal Arts University and P's: Richard Cardullo, UCR Biology, Kathleen Bocian,
 UCR School Ed Education, Kimberly Hammond, UCR Biology, Michael Rettig, UCR Chemistry and
 Pamela Clute, UCR Alpha Center. Pamela Clute, UCR Alpha Center.
 We wish to thank James Lewis, Lisa Fast, C Cathy Miller, YiFeng Hu, DeWayne Mason and the staff
 and faculty at the participating school district.

