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Assessing Elemental and Structural
Validity: Data from Teachers,

Non-teachers, and Mathematicians

Heather C. Hill
Harvard Graduate School of Education, Cambridge, Massachusetts

Carolyn Dean and Imani Masters Goffney
University of Michigan, Ann Arbor, Michigan

Validation efforts typically focus around what, exactly, is measured by an
instrument(s), and whether what is measured corresponds to the theoretical
domain(s) originally specified. In this paper, we conduct a first analysis into
these issues. Our goal is building instruments focused around measuring the
mathematical knowledge used in teaching: not only the content that teachers
teach to students directly, but also the professional knowledge that helps support
the teaching of that content. Following Kane (2001; 2004a) and as reported in
Schilling & Hill (this issue), we developed two assumptions and related infer-
ences to represent this thinking:

1. Elemental assumption: The items reflect teachers’ mathematical
knowledge for teaching and not extraneous factors such as test taking
strategies or idiosyncratic aspects of the items (e.g., flaws in items).

A. Inference: Teachers’ reasoning for a particular item will be consistent
with the multiple-choice answer they selected.

2. Structural assumption: The domain of mathematical knowledge for
teaching can be distinguished by both subject matter area (e.g., number and
operations, algebra) and the types of knowledge deployed by teachers. The
latter types include the following: content knowledge (CK), which contains

Correspondence should be addressed to Heather C. Hill, Harvard Graduate School of Education,
Gutman Library, Room 445, 6 Appian Way, Cambridge, MA 02138. E-mail: heather_hill@
harvard.edu
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82 HILL, DEAN, AND GOFFNEY

both common content knowledge (CCK), or knowledge that is common to
many disciplines and the public at large, and specialized content knowledge
(SCK) or knowledge specific to the work of teaching; and knowledge of
content and students (KCS), or knowledge concerning students’ thinking
around particular mathematical topics. Implications of this include:

A. Inference: Items will reflect this organization with respect to both
subject matter and types of knowledge in the sense that items
reflecting the same subject matters and types of knowledge will have
stronger inter-item correlations than items that differ in one or both of
these categories. This will result in the appearance of multiple factors
in an item factor analysis.

B. Inference: Teachers can be reliably distinguished by unidimensional
scores reflecting this organization by subject matter and types of
knowledge. These scores are invariant with respect to different
samples of items used to construct the scores.

C. Inference: Teachers will tend to answer most problems (except those
representing CCK) with knowledge specific to the work of teaching.
Non-teachers will rely on test-taking skills, mathematical reasoning,
or other means to answer these items.

D. Inference: Teachers’ reasoning for a particular item will reflect the
type of reasoning (either CK or KCS) that the item was designed to
reference.

Assessing these assumptions and interpretations will provide both practical
and theoretical information about our measures. If the structural assumption is
correct in identifying separate domains of knowledge, for instance, it provides
a warrant for the construction of separate CK and KCS scores. It also implies
that KCS, which has not yet been identified in large-scale survey research as a
separate domain, is a genuine domain of measurement.

The elemental assumption is designed to address a possible critique of our
items: that no test cast in a multiple-choice format could measure a complex
and judgment-laden practice such as teaching. The critique is noted by Haertel
(2004) in his response to Kane’s original article; Haertel writes, “the activities of
reading and responding to a multiple-choice question are quite unlike the activ-
ities required in professional practice.” (p. 176). He concludes that this renders
problematic Kane’s connection between the test domain and the knowledge,
skills, and practice domain the test is meant to represent.

This critique is also backed, in the scholarly literature, by a wave of criticisms
of multiple-choice assessment in the early 1990s, including allegations that such
assessments focused narrowly on basic skills (in mathematics, recall, and proce-
dures) and did not measure students’ ability to solve complex real-world problems
(Boodoo, 1993). A review of the larger literature on test validity by Martinez (1999)
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ASSESSING ELEMENTAL AND STRUCTURAL VALIDITY 83

suggests that although multiple-choice assessments are not limited by their format
to assessing lower level cognitive functions, evidence from existing exams suggest
many do. Martinez also notes an additional challenge: that scores on multiple-
choice exams may reflect, in part, “test-wiseness”—examinees’ ability to recognize
cues, deploy response elimination strategies, work backwards, or utilize other infor-
mation in the stem to arrive at a correct answer without “true” knowledge of the
underlying content being assessed. Both these potential threats to validity are of
concern to the measures development effort described here, because test authors
wanted to measure knowledge used in teaching rather than basic skills or low-level
cognitive activities, and because the use of test-taking strategies is a serious threat
to the interpretation of scores.

To assess these interpretations of scores, we engaged a set of teachers, non-
teachers, and mathematicians in cognitive interviews around a subset of items
sampled from our larger pool. Cognitive interviews are advocated by survey
research methodologists such as Sudman, Bradburn, & Schwarz (1996) as a
method for ascertaining how respondents interpret and respond to survey items.
Though much of this work, including recent work in the field of education
(Camburn & Barnes 2004; Desimone & Le Floch, 2004) has focused on survey
rather than test-like items, the logic is similar.

Below we briefly describe the methods we employed in collecting and
analyzing data. We then analyze interview data using two different methods. We
address the elemental validity by examining whether, for each item, a teacher’s
thinking was consistent with the multiple-choice answer she selected, and in
particular whether correct thinking was accompanied by a correct answer (and
vice versa). This is a first step in establishing whether teachers’ scores are
reflective of their level of mathematical knowledge for teaching, and whether
multiple choice is a viable format for measuring such knowledge.

Second, we also examined responses to determine whether teachers drew
on the type of knowledge that items were intended to tap. This allows us to
examine the elemental assumption—in particular, whether test-taking or other
types of thinking or knowledge were prevalent. It also helps us address the
structural assumption by determining whether teachers draw on different types
of teaching-specific knowledge to answer these items.

For this analysis, we focus mainly on distinctions between CK and KCS
items. Although the structural assumption describes further divisions within CK
(common versus specialized CK), reasoning in both cases looks purely mathe-
matical. As a result, we cannot use the analysis of respondents’ thinking to make
a determination about the existence of sub-domains. We are able to examine,
from this interview data, whether non-teachers’ thought process indicates this
subdivision, and do so briefly at the end of the results section. We also take the
common versus specialized distinction up at length in the Schilling (this issue)
paper.
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84 HILL, DEAN, AND GOFFNEY

METHODS

Interview Sample and Protocol

Twenty-seven teachers, 18 non-teachers in similar professions (nursing, social
work), and 18 professional mathematicians participated in this study. We
included non-teachers and professional mathematicians in the sample specifically
to address the question of dimensionality; if there is knowledge for teaching
separate from content knowledge itself, teachers, and not non-teaching profes-
sionals, should be the primary users of this knowledge. Further details on
response rate and sample characteristics are available in Hill, Dean, & Goffney
(2005).

Respondents were selected based on their mathematical knowledge1, took the
multiple-choice items on their own, then engaged during the 50–75-min interview
in what Sudman, Bradburn, & Schwarz (1996) would term a “retrospective
think-aloud,” in which they reported on how they determined their answers.
Following advice from Ericsson and Simon (1984), we provided respondents
with instructions to track their thinking process during their independent work.
We chose retrospective, as opposed to concurrent (reporting thinking at the same
time they were solving items), think-alouds in order to maximize the number of
items covered in the interview, and because evidence suggests that information
that is heeded during the performance of a task (i.e., the solution process) can
be reliably retrieved (Ericsson & Simon, 1984). One drawback of retrospective
interviews, however, is that the data generated may not represent the full array
of problem-solving strategies by respondents—particularly those initially used
and then discarded in favor of other methods or answers.

We selected items for interviews based on our interest in understanding
how the item “worked,” variation in IRT results, and variation in construct.
In the area of content knowledge, we selected 18 number/operations items
lodged beneath eight stems and five geometry items lodged beneath one stem.2

These content knowledge items varied in the extent we believed they would
require the user to invoke common and specialized mathematical knowledge.
In the area of KCS, we selected one open-ended and five multiple-choice items
designed to explore teachers’ knowledge of common student errors in number and
operations.

1In order to ensure variation in knowledge level, we selected teachers and non-teachers to
participate in cognitive interviews based on scores on an initial survey, conducted through the mail
with a larger sample of each group (50 teachers, 71 non-teachers). Raw scores were divided into
quartiles from which we selected 10 individuals earning the lowest raw score and 10 individuals
earning the highest raw score.

2A stem is a problem situation, and an item is a selection made by a teacher. Where some stems
have only one item, others require teachers to make more than one selection (in psychometric terms,
they are “testlets”).
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ASSESSING ELEMENTAL AND STRUCTURAL VALIDITY 85

Analyses

Consistency

As stated in the first inference above (1A), teachers’ reasoning for a particular
item should be consistent with the multiple-choice answer they selected. To
elaborate, consistency occurs when interviewees who know the mathematics or
information about students invoked by the item choose the correct answer, and
those who do not know choose an incorrect answer. Inconsistency occurs when an
individual gets the right answer on the basis of faulty thinking (e.g., a respondent
who answers correctly that a cube never has eight edges, then elaborates that
this is because all cubes have six edges [in fact, cubes have 12 edges]) and
also when an individual with a sound understanding of the underlying problem
answers incorrectly (e.g., when an individual has correctly diagnosed a student’s
difficulty as a misunderstanding about place value, but chooses the answer “I’m
not sure” because one can really never know what a hypothetical student is
thinking). Codes for inconsistency were also assigned to interview passages
where respondents answered correctly by guessing, mistakenly circled the wrong
answer choice, misread the item, and those passages where the respondent
originally gave the wrong answer on the written pre-interview survey, then self-
corrected, demonstrating sound mathematical understanding, during the course of
the interview. We reached 89% interrater agreement in trials before completing
coding individually. There were no subsequent checks for interrater reliability.

Thinking

Our structural assumption and its inferences (2A–D) asserts that scores reflect
specific types of mathematical knowledge for teaching. Analyzing the thinking
behind answers can provide one insight into whether this is the case; comparing
across the groups in this study allows us to see whether any knowledge is
unique to the work of teaching. Finally, learning more about the characteristics
of respondents’ thinking processes can help us answer critiques of the multiple-
choice format, particularly allegations that these items tap low-level knowledge
and skill and may be prone to test-taking strategies and/or guessing.

After we received and cleaned our data, we constructed a set of codes that
reflect patterns in respondents’ thought processes. Six of these codes are mathe-
matical in nature:

• Mathematical justification: This code reflects correct mathematical
reasoning about an item, usually with recourse to definitions, definitive
examples or counter-examples, or the consideration of unusual cases (e.g.,
zero or negative numbers).

• Memorized rules or algorithm: Respondent refers to memorized rule or
algorithm for primary justification for answer.
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86 HILL, DEAN, AND GOFFNEY

• Definitions: Correct uses of definitions are included in mathematical justi-
fication, above. This code captures inaccurate or incomplete uses of defini-
tions (e.g., “I can’t remember the definition exactly”).

• Examples/counterexamples or pictures: This code reflects a respondent
choosing numbers, cases, figures or shapes (including drawing figures
and shapes) to assist in reasoning through a problem. If an example is
used as proof (e.g., by counterexample, by unusual case) it is coded as
mathematical justification above. This code mainly comprises examples
that do not rise to level of justification, or examples used to support
incorrect answers.

• Other mathematical reasoning: Mathematical thinking that does not fall
into the category of justification, definitions, examples or pictures. The
respondent may use mathematical deduction, inference, or other type of
thinking to support her answer (e.g., “looking at these numbers listed in
the problem, (c) must be true.”) The response can either reflect correct
thinking or incorrect thinking; the main feature is that there is something
mathematical about the thought process, rather than a non-mathematical
process such as test-taking, guessing, etc.

One code referred to knowledge of students:

• Knowledge of students and content: Respondent invokes knowledge of
students as partial or complete explanation for selecting their answer (e.g.,
“my students do this all the time.”)

And three codes referred to non-mathematical and non-student methods for
answering problems:

• Guessing: Respondent reports guessing.
• Test-taking skills: Respondent uses information in the stem, matches

response choices to information in the stem, or works to eliminate answers
as method for solving problem (e.g., “I knew it wasn’t (a), thus (d) ‘all of
the above’ couldn’t be true.”).

• Other: Other non-mathematical thinking.

When no reasoning was apparent from the transcript, a code of “not present”
was applied. Two or more codes could be applied to a single response, if
necessary; in practice, however, we tried to keep the number of double-coded
responses to a minimum. All responses, whether correct or incorrect, were coded.

This coding scheme helps provide information on both the elemental and
structural assumptions. In the former case, we can estimate the amount of test-
taking, guessing, and other non-mathematical thinking that occurred in response
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ASSESSING ELEMENTAL AND STRUCTURAL VALIDITY 87

to our questions. In the latter case, we can assess whether respondents appeared
to draw on different knowledge bases when answering CK and KCS items. We
can also determine whether non-teachers also “have” KCS and, to a more limited
degree, specialized content knowledge.

RESULTS

Consistency of Thinking and Answers

As Table 1 shows, average inconsistency rates are quite low for the CK items.
Among teachers, the primary target of these items, only 1 in 20 answers to items
failed to capture respondent’s underlying knowledge. These rates of inconsis-
tency range from zero for several items to 19% for a particularly problematic
item asking teachers to represent 1 1/2 × 2/3 using a diagram (item 2 in the
Appendix); however, most other items had low inconsistency rates. Inconsis-
tencies in the KCS domain were, on average, higher for teachers but comparable
for the other groups. The high teacher inconsistency rate reported for KCS is
largely due to problems with one item, which showed a 40% inconsistency rate.

An analysis of inconsistent responses shows that 44% percent result from an
answer changed during the interview; in some cases, respondents reported they
misread the item in their initial work while in others, respondents changed their
answer in response to probing by the interviewer. Both types of inconsistency
seem endemic to either the process of taking any written survey/questionnaire

TABLE 1
Consistency Rates

Inconsistent Responses

Overall rates Teachers 8�1%
Mathematicians 5�2%
Non-teachers 7�9%
Average 7�3%

CK items only Teachers 6�3%
Mathematicians 5�0%
Non-teachers 8�1%
Average 6�6%

KCS items only Teachers 15�6%
Mathematicians 6�1%
Non-teachers 6�0%
Average 10�0%

Note. The unit of analysis is respondent comments about one item.
Percentages show the proportion of units falling into each category.
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88 HILL, DEAN, AND GOFFNEY

without interaction or feedback, or the social process that occurs during inter-
views. Inconsistencies also occurred because some items simply failed to
accurately capture the mathematical knowledge held by individuals. The cube
problem described above is one example. In another example, some respondents
incorrectly agreed with statements such as “you can’t subtract a number from
zero,” but in interviews, revealed that they had consciously limited the domain
to whole numbers, for which this statement is true. The stem urged respondents
to consider whether this statement was true, “not actually true, or [� � �] not true
for all numbers.” Yet many respondents answered incorrectly while displaying
what we could consider to be relatively nuanced understanding of mathematical
domains.

A third category of inconsistent answers can be attributed to more traditional
survey design difficulties. In most cases, we believe that the main issue is the
language of the item itself. Questions that asked respondents to identify the least
likely student errors were often mistakenly answered as if they asked for the
most likely student error. In several items, we asked respondents to infer what
students or teachers knew in solving mathematics problems; some respondents
balked, epistemologically, at making such an inference.

Respondents’ Thinking

Evidence for the Elemental Assumption

Tables 2 and 3 show the types of thinking that occurred in answers to the CK
and KCS items, respectively. Results look promising for the CK items, where
the most commonly used processes were mathematical in nature: justification,
other mathematical thinking, and the recall of memorized rules or procedures. To
answer our items, in other words, respondents relied on mathematical knowledge
or thinking. Guessing was virtually non-existent, at least in the face-to-face
interviews3. Test-taking strategies were also relatively minimal. These findings
suggest that the CK items do capture some aspects of respondents’ mathematical
thought process.

Results in Table 2 also help provide information on whether our multiple-
choice items lead respondents to try to recall rules and procedures, or whether
they ask respondents to use more sophisticated forms of mathematical reasoning.
For both teachers and non-teachers, reliance on memorized rules was a not
uncommon (15%) strategy, but also failed to make up the majority of explana-
tions for answers. It is worth noting, also, that the majority of recall/procedures
codes were applied to three stems: one invoking the formula for area of a

3One reason might be that respondents are less likely to admit guessing in face to face interviews.
However, we have also seen no psychometric results that suggest guessing is a prevalent problem
for most items, either.
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TABLE 2
Explanations for Content Knowledge Items

Mathematical
Justification

Mathematical
Reasoning

Memorized
Rules Definition

Examples and
Counter
examples

Admitted
Guessing Test-Taking Other

Not
Present

Teachers 26�0% 35�2% 15�3% 0�8% 2�3% 1�8% 3�8% 0�4% 11�7%
Mathematicians 39�7% 36�8% 11�4% 0�4% 0�0% 0�0% 2�7% 0�0% 7�9%
Non-teachers 25�0% 36�5% 15�4% 1�6% 2�5% 1�8% 2�5% 0�2% 9�2%
Average 29�5% 36�0% 14�2% 1�0% 2�0% 1�2% 3�1% 0�2% 9�9%

Note. The unit of analysis is respondent comments about one item. Percentages show the proportion of units falling into each category.

89
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90 HILL, DEAN, AND GOFFNEY

TABLE 3
Explanations for KCS Items

Knowledge of
students

Mathematical
reasoning

Admitted
guess

Test-taking
skills Other

Not
present

Teachers 40�5% 40�0% 0�0% 16�1% 0�0% 1�5%
Mathematicians 1�8% 50�9% 0�9% 30�7% 0�0% 4�4%
Non-teachers 15�5% 58�1% 3�9% 21�7% 0�8% 0�0%
Average 23�4% 48�0% 1�3% 21�4% 0�2% 1�8%

Note. The unit of analysis is respondent comments about one item. Percentages show the
proportion of units falling into each category.

circle, and two showing standard and non-standard but mathematically correct
algorithms for operations with rational numbers. In one of the latter cases,
recall of the standard algorithm was a common explanation for the wrong
answer; as one respondent said, “[I] knew that [the non-standard] method was
wrong even though he happened to get the right answer for this problem � � � .
[respondent recites standard algorithm]. I remember that rule. So that’s what I
went by.” [Loepp, 117–120]4 Although this non-standard method was correct,
this respondent relied only on the memorized rule and thus answered the item
incorrectly.

Reasons for the KCS responses, however, were more troubling. Table 3 shows
that while 40% of teachers did express familiarity or knowledge of the student
error or strategy we sought to assess, an equal number used other mathematical
thinking to arrive at their answer. Often, these two codes were used in combi-
nation to describe respondents’ thought process. To some degree, this makes
sense; an inspection of Appendix items #3 and #4, for instance, suggests that
some amount of mathematical thinking is necessary to solve the item correctly—
if only, for instance, being able to put decimals in order accurately. However,
a large number of correct responses to these items by non-teachers and mathe-
matics, who relied mainly on mathematical thinking in formulating their answers,
suggests that such problems can be answered with no knowledge of students
present. In addition, the use of test-taking strategies occurred at a fairly high
level with KCS items—at a rate of over 16% for teachers. This constitutes a
threat to the validity of the items.

Evidence for the Structural Assumption

The results above suggest there is evidence for the multidimensionality we
hypothesized under our validity argument. Table 3 shows teachers did refer to
their experiences with students in answering KCS items, and in many cases, those

4Names are pseudonyms. Numbers refer to line numbers in NUDIST database.
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ASSESSING ELEMENTAL AND STRUCTURAL VALIDITY 91

experiences appear to enable the production of correct answers. For instance, one
problem asked teachers to reflect on why a student might not be able to solve
a problem such as 8 + 4 = __ + 5; research in student cognition suggests students
interpret the equals sign to mean “compute now,” making the most common
error on this problem an answer of 12 (Carpenter, Franke, & Levi, 2003). In
discussing this item, a teacher commented:

I’ve seen this over and over as a 3rd and 5th grade teacher. Eight plus four
equals something plus five. And, you know, as many times as you explained
that this is a balance and that equals sign is the middle of the balance beam
and both sides—it’s straight because they’re both perfectly equal. � � � And how
many kids will write twelve there? Because they’re just looking at eight and four
equals something. They’re not looking at this equation balances with that equation.
(Thorn 237–241)

Teachers like Thorn are articulate about the mathematical problems their students
face; non-teachers and mathematicians, by contrast, reasoned their way to
the correct answer through other, often more circuitous means—only 2% of
responses from mathematicians and 16% of responses from non-teachers invoked
knowledge of students in their answers. Similarly, mathematicians were markedly
less likely to get these items correct than content knowledge items (Sleep,
Delaney, Dean, Ball, Hill, & Bass, 2005).

In related work (Sleep, Delaney, Dean, Ball, Hill, & Bass, 2005), we have also
explored the extent to which specialized knowledge exists by examining whether
mathematicians have difficulty answering any CK items. Most mathematicians
answered most CK items correctly. However, there were a small number of items
on which some mathematicians struggled. Our analyses of these items suggest
some mathematicians lack flexibility with non-standard approaches. When shown
non-standard multi-digit multiplication methods, for instance, some respondents
could recognize that the student had arrived at the correct answer, but could
not decipher the method. In a few extreme cases, we found that mathemati-
cians indicated that an alternative approach to solving a problem was incorrect
simply because it was non-standard. Mathematicians’ responses also reflected, in
some cases, their “compressed” knowledge of the subject: for example, mathe-
maticians freely interchanged equivalent representations or concepts, unaware
of how such a seemingly simple substitution might impact the teaching of
mathematics to children. On other items, mathematicians didn’t recognize that
a concept or logical step might not be obvious to non-experts. We hypoth-
esize that these two aspects of reasoning —flexibility and decompression—are
aspects of specialized knowledge for teaching, and may be possessed by teachers
expert in teaching mathematical content to students. This finding does not align
precisely with our initial definition of specialized content knowledge, a topic
we take up again in the Schilling paper (this issue) and in our concluding
paper.



D
ow

nl
oa

de
d 

B
y:

 [H
ar

va
rd

 U
ni

ve
rs

ity
 G

ra
du

at
e 

S
ch

oo
l] 

A
t: 

20
:4

3 
30

 J
un

e 
20

08
 

92 HILL, DEAN, AND GOFFNEY

CONCLUSION

Our elemental assumption, that these measures represent teachers’ mathematical
knowledge for teaching, is supported by evidence for the content knowledge
items but not their companions, the knowledge of content and students items.
Results from our examination of consistency and reasons suggest that it is
mathematical processes, by far, that underlie answers to the CK items. Test-
taking and guessing occurred at relatively low rates, and inconsistencies between
individuals’ thinking and answers were within what we would probably consider
to be normal bounds. Results from the KCS items were more mixed, however.
While some teachers did use what we coded as KCS in their answers to these
items, other teachers, non-teachers, and mathematicians also relied on mathe-
matical reasoning in generating their answers.

The evidence about KCS, however, does suggest that the answer to the
structural assumption is a modified yes. As we shall see in our psychometric
analysis, it does appear that there is not one unitary “mathematical knowledge for
teaching” that underlies teachers’ answers to these items, but at least two: CK and
KCS. This suggests that, in practice, the construction of two separate scores to
represent individuals’ capacities is warranted. However, the multidimensionality
found within the KCS items suggests that constructing a scale score for this
domain will not be entirely straightforward, because KCS must be separated
from the mathematical reasoning ability tapped by such items.

This analysis has allowed us to rule out common problems and critiques
of multiple-choice items. It does not appear, for instance, that CK items draw
mainly on respondents’ ability to recall rules or algorithms. Instead, mathe-
matical reasoning—and in some cases, justification—are required to come to
an appropriate answer. Test-taking is also not a skill that is widely used in the
CK domain, and if it is used, it does not bias the respondent toward a correct
answer.

Finally, this study has provided a rich data source for learning about and
improving our items. Some of the improvements have already occurred at the
item level: for instance, not asking respondents to infer what a hypothetical
teacher or student knew or was thinking. Others will guide future item writing
efforts. “Choose the least likely,” for instance, is no longer used as a format
for items. And insights from the KCS item responses, in particular, will allow
us to rethink and possibly entirely recast our measurement efforts in this
domain.


