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Imagine asking a first-semester calculus student to explain the definition of the 

derivative using the epsilon-delta definition of a limit. Given the difficulty of each of 
these concepts for students in such a course, you might not be surprised at the array of 
confused responses generated by a question requiring understanding of both. Since the 
central ideas in calculus are defined in terms of limits, research on students’ 
understanding of limits and the ways in which they can develop more powerful ways of 
reasoning about them has significant implications for instructional design. Throughout 
this paper we will focus on calculus courses intended as an appropriate introduction for 
students who have never seen limits or derivatives and that is not intended to be a 
rigorous treatment of analysis. The following typical response to the question relating the 
definitions of limit and the derivative illustrates the confusion that students exhibit when 
trying to make such connections. This response was offered by an A-student, who we will 
call Bob, during a clinical interview late in a first-semester course: 
 

Your epsilon - this - the slope of this tangent line. You want to pick a set of x's, and 
that's here [points at graph]. This x, it's barely changing such that it's equal to or less 
than this tangent line. That would be your delta. The slope - oh, OK. The slope of this 
tangent line [points at tangent] - that's epsilon. The slope of this line [points at 
secant] that you're making is your delta at 2. Take a delta - a slope of this line [points 
at secant] less - such that it is less than the slope of this tangent line.  

 
Bob’s language is confused, but it seems he was identifying epsilon as the slope of 

the tangent line and possibly both x and delta as the slope of a secant line and indicates 
that he wants the latter to be smaller. It is quite likely that this question was beyond Bob’s 
conceptual resources and that he was simply trying to make any connection possible to 
appease the interviewer. Had he been present, Bob’s professor might have been rather 
discouraged by this response given the efforts he made in class, during special study 
sessions, and through creatively designed homework to help his students understand the 
formal definitions of both limits and derivatives. 

Only a few seconds later, however, the interviewer asked Bob to explain the same 
idea in terms of approximation and received this response: 

 
There will be - there could be a difference in the slopes of these lines. You could say 
that the slope of this line [points at secant] is approximately equal to this [points at 
tangent] with a margin of error of such and such, and that margin of error can be less 
than that [points at the word “bound”]. You can choose a slope that's less than the 
margin of error - less than whatever you need it to be. 

 
When asked to explain his use of language about “error” in more detail, Bob explained 
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Your margin of error is here [holds up hands facing each other to indicate a distance] 
and here’s your limit [waves one hand] and you have to be at least in so far closer to 
it [waves other hand across the space in between]. You can always get closer to it, 
you know? That’s the way I was looking at bounding. You can always get closer to it. 
 
Bob’s characterization of the limit is noticeably different in this excerpt. He described 

approximating the slope of a tangent line using the slopes of secant lines with an error 
that can be made smaller than some predetermined bound. Much of the logic involved in 
this statement is identical to the logic of the epsilon-delta statement that he completely 
failed to interpret only moments earlier. 

What did Bob understand about limits? What about derivatives? What bearing did his 
understanding of limits have on his understanding of derivative? In this chapter, we will 
explore the pedagogical implications of this sort of discrepancy in students’ ability to 
articulate mathematical concepts involving limits in a wide variety of situations. This will 
lead into a design perspective on how we might better help students learn and use limit 
concepts. Before engaging this task, however, we will address how abstract concepts 
develop in general and identify various goals for teaching limits. 
 

The Nature and Process of Abstraction 
 

One of Jean Piaget’s most forcefully repeated conclusions from careful observations 
of the nature of abstraction relates to the source of abstract concepts. Specifically, he 
argues that the source of conceptual structure such as that found in mathematics is an 
individual’s actions or coordinations of actions on physical or mental objects (Piaget, 
1970a, 1970b, 1975, 1980, 1985, 1997). As illustrated in Figure 1, the significance of this 
statement is that it emphasizes actions rather than other potential sources, such as objects, 
their properties, or even relationships among objects. To serve as the source of an 
abstracted concept, such actions must be engaged repeatedly while receiving and 
incorporating feedback under the specific constraints of a system that is being explored. 
Piaget (1970b) used the structure of the algebraic group as a prototype for all conceptual 
structure to emphasize the way in which actions embody structure that can be abstracted 
by the individual. He emphasized the role of operations (such as physically or mentally 
performing a symmetry transformation of a figure) and ways in which they can be 
coordinated (such as realizing an associative property or inverse condition) in addition to 
the elements with their properties and relations. Conceptual structure, such as that 
representing a dihedral group, is formed as a whole from the inseparable interplay 
between these elements and operations. 
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Piaget’s characterization of the process of abstraction applied to limit concepts 
suggests three important features of instructional activity. First, the structure of 
understanding we hope our students will achieve should be systematically reflected in the 
actions we ask them to perform. Since these activities form the basis of conceptual 
understanding and thus also precede such understanding, they must be stated in terms 
more accessible to students than formal definitions. If a formal understanding (such as an 
ability to interpret and apply epsilon-delta definitions in a variety of contexts) is to 
eventually develop, it will be built on conceptual structures that already make sense to 
students because of their previously internalized activity. On the other hand, if students 
will never be expected to develop such formal understandings, then their conceptual 
structures and abilities can still reflect rigorous and appropriate mathematics. For 
example an engineering student, such as Bob who was introduced at the beginning of this 
chapter, might be able to develop a general understanding of techniques by which the 
error for an approximation may be made smaller than some required bound without this 
being formalized as finding a 0δ >  such that ( )f x L ε− <  whenever 0 x a δ< − < .  

The second feature of instructional activity we infer from Piaget’s theory of 
abstraction is that students’ actions should be repeated and coordinated in ways that help 
them attend to feedback obtained from the inherent constraints of the system being 
explored. In the preceding example, the dependence of delta upon epsilon is a key feature 
of the structure. Students struggle with this dependence, however, since it moves in the 
opposite direction from the action of the function (i.e., it moves from a condition in the 
range to a condition in the domain). A student such as Bob may only attend to the 
appropriate dependence due to encountering a difficulty that otherwise arises, for 
example, through a real need to find an approximation with sufficient accuracy for some 
purpose.  

The third implication we draw from Piaget’s theory is that instruction on the limit 
concept should not be isolated, but extend throughout its many applications in the 
calculus curriculum in ways that foster mutual growth. The concepts defined in terms of 
limits provide fertile ground for continued exploration into important issues related to 
limits. Reciprocally, an emerging understanding of the depth of limit structures can help 
guide students’ explorations into these other concepts. 

 
Goals for Teaching Limits 
 

Actions and 
Coordinations of Actions 

Abstraction in Mathematics Structure of 
Concept 

Figure 1. The source of complex abstract concepts are actions and coordinations of 
actions. 

Objects and  
Properties of Objects  Ordinary Abstraction  
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Instructional decisions regarding the teaching of limits will ideally follow from 
specific objectives for students’ learning. We will briefly outline a small number of 
possible goals and trace research related to the implications of pursuing each one. 

Exposure to formal definitions and proofs. A possible objective for the instruction of 
limits is for students to develop facility with formal epsilon-delta and epsilon-N 
definitions and arguments. In fact, the Principles and Standards, published by National 
Council of Teachers of Mathematics (NCTM) argue that throughout their mathematical 
careers, students should continually engage in proof and argumentation. Construction of 
simple epsilon-delta proofs provide opportunities to interpret and then use definitions in a 
rigorous fashion (cf., Edwards and Ward, this volume, for a discussion of the role of 
definitions in formal proofs). Other objectives that would lead to a similar approach 
include fostering students’ understanding of limit concepts in terms of epsilon-delta (or 
epsilon-N) arguments preparing students for more advanced mathematical study and 
establishing a rigorous foundation for the entire calculus curriculum. Such goals were 
especially pursued during the 1960’s and early 1970’s in efforts to increase the rigor of 
mathematics curricula to support a growing demand for scientists, engineers, and 
mathematicians. 

Most calculus textbooks include a section on the formal definitions of limits, 
providing basic epsilon-delta and epsilon-N definitions, some pictures and intuitive 
explanations using graphs of functions and sequences, simple existence proofs for 
specific limits, and proofs of basic properties of limits (such as linearity). These ideas are 
typically presented in the text shortly after limits are introduced, but since most 
introductory calculus courses are not intended to provide a rigorous treatment of analysis, 
they are rarely raised afterwards. Several education researchers and curriculum 
committees have concluded that carrying formal limit proofs forward throughout an 
introductory calculus sequence might be successful in preparing a small number of the 
most talented students for further studies in advanced mathematics, but it leaves the vast 
majority of students with little more than a procedural understanding and an impression 
of mathematics as personally incomprehensible (Davis, 1986; Tall, 1992; Tucker & 
Leitzel, 1995). It is unclear whether introducing formal definitions even conveys to 
students a sense that there is a rigorous foundation for the mathematics. Consequently, 
these definitions and proofs are often de-emphasized in current curricula and courses as 
explicitly recommended in the report of the content workshop for the MAA publication 
Toward a Lean and Lively Calculus (Tucker, 1986). 

A more modest goal for introducing limit proofs than providing a rigorous treatment 
of the entire calculus curriculum is to engage students in a limited amount of formal 
mathematical argumentation. Unfortunately, many instructors find little time to devote to 
this goal under the pressures of an expansive curriculum. As a result, most students only 
learn the basic patterns to complete simple algebraic proofs or learn the rules and 
peculiarities of a particular representation (e.g., games where you “keep the graph in the 
box” on a calculator or player 1 challenges with an ε and player 2 finds a δ) without 
understanding the connections to other representations, potential applications, or other 
content in the course (Jacobs, Larsen, & Oehrtman, 2003). 

From Piaget’s characterization of the process of abstraction, we can understand some 
of the difficulties students have with formal limit concepts. Instruction that begins with 
formal definitions attempts to move in the opposite direction from which abstraction 
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naturally occurs. When students are first exposed to the concepts in calculus, there is no 
conceptual structure through which they can meaningfully interpret key features of 
formal limit structures. Based on Piaget’s theory of abstraction and refined through a 
series of clinical interviews with students, Cottrill et al. (1996) have proposed a 
progression of actions that students must abstract, generalize, and relate to one another in 
order to construct such a conceptual structure. For the limit lim ( )

x a
f x L

→
= , they suggest 

that students must first abstract the actions of evaluating f at points near a, then develop 
and coordinate domain and range processes of x approaching a and ( )f x  approaching L. 
Then this coordinated structure must be reinforced by performing actions on limits, such 
as by considering limits of combinations of functions. Only at this stage in Cottrill et al.’s 
framework are students able to reconstruct these coordinated processes in terms of 
inequalities, apply a consistent understanding of the universal and existential quantifiers, 
and develop a complete epsilon-delta conception for a specific situation. 

Attempts to support students’ understanding of a formal definition with an intuitive 
rephrasing such as “You can make ( )f x  arbitrarily close to L by making x sufficiently 
close to a” also provide neither appropriately structured activity nor underlying meaning, 
so are likely to fail as well. Instead, under the burden of making some sense out of what 
is being said, students attach simpler meanings to these phrases. In interviews with 
students throughout three semesters of calculus being exposed to such language, nearly 
all interpreted the modifiers “arbitrarily” and “sufficiently” in the simplest way possible: 
as indicators of degree (Oehrtman, 2002). To them, “sufficiently small” meant “very 
small” and “arbitrarily small” meant “very very small.” These students did not have any 
experiences from which the intended logical entailments of these phrases could be 
generated. 

If students are not expected to use epsilon-delta definitions and arguments throughout 
a course, the corresponding conceptual structure is neither continually reinforced nor 
developed for use as a powerful tool. Consequently, it is unclear how formal limit 
definitions and proofs could guide students’ exploration into subsequent topics without 
offering a nearly complete analysis course. 

Intuitive understanding. Most secondary and introductory undergraduate calculus 
courses and textbooks take an approach to limits that focuses on intuitive ideas and 
phrasings, such as “when x gets close to a, ( )f x gets close to L.” Even if formal 
definitions are introduced and used to prove some basic properties of limits, they are de-
emphasized or abandoned when advancing to subsequent concepts, even those that are 
defined in terms of limits. The definition of derivative is rarely treated in terms of 
epsilons and deltas in an introductory calculus course, for example. One purpose of 
treating limits with an intuitive approach is to provide a common and accessible 
introduction to other concepts throughout the course (cf., Speiser & Walter, this volume). 
Derivatives are discussed in terms of secant lines where the points are made closer and 
closer to each other, and definite integrals are defined as summing products over intervals 
that get smaller but increase in number. Another objective leading to similar approaches 
is the need to teach a number of techniques for algebraic computations that will be used 
later in the course, such as finding certain derivative formulas, determining specific 
values for improper integrals, or applying convergence tests for infinite series. Since 
these skills do not require students to understand epsilon-delta and epsilon-N structures, 
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formal definitions are often de-emphasized and intuitive descriptions of limits viewed as 
sufficient. 

When subsequent topics are introduced through an informal understanding of limits, 
the role of limits is typically suppressed. Operationally, the limit concept is often 
concealed both conceptually by definitions of derivatives in terms of slope, definite 
integrals in terms of area, Taylor series as actual sums, etc. Corresponding to this 
conceptual shift, limits may also be de-emphasized notationally. For example, ( )f a′  may 
be described as the slope of the tangent to the graph of f at ( ), ( )a f a , the definite integral 

( )
b

a
f x dx∫  may be described as the area under the graph of f on the interval [ , ]a b , or the 

Taylor series 
0

( ) ( )
!

n
n

n

f a x a
n

∞

=
−∑  as being equal to ( )f x  for most functions students will 

see. Limit notation is absent from all of these descriptions and limit structures (as 
encapsulated by epsilon-delta or epsilon-N definitions) are even further in the 
background. Intuitive images such as tangent lines, areas, and infinite sums are often used 
as a proxy for limits since they are conceptually accessible to students and can be 
extremely powerful for intuitive reasoning (Monk, 1987, 1992; Rodi, 1986; Tall, 1992; 
Thompson, 1994).  

Informal language and reasoning about limits can also lead to misconceptions for 
even advanced students who are supposedly equipped with the formal tools to avoid such 
errors. Twenty-two students in their final year of university mathematics and who had 
dealt with the formal epsilon-delta definition of limits for two years were asked the 
following question:  

True or false: Suppose as x a→  then ( )f x b→ , and as y b→  then ( )g y c→ . Then 
it follows that as x a→  then ( ( ))g f x c→ . 
All but 1 of these 22 students responded “true” and refused to change their answer 

even when pressed (Tall & Vinner, 1981). Whether considered explicitly or 
subconsciously, the logic of this statement as typically verbalized establishes a false 
syllogism by stating “If x approaches a then ( )f x  approaches b, and if y approaches b 
then ( )g y  approaches c.” If the first premise holds, then ( )f x  satisfies the hypothesis of 
the second premise, i.e., it qualifies as a y that approaches b, thus leading to the incorrect 
conclusion that ( ( ))g f x  approaches c. Additionally, the arrows and their verbalizations 
as “approaches” or “goes to” are represented in the same way for both dependent and 
independent variables in this problem. The suppression of different technical meanings 
by using the same notation for both contributes to students’ misconceptions. 

In another study on the use of intuitive dynamic language, when faced with 
challenging problems involving limiting situations, students did not rely on images of 
motion to reason about the problems (Oehrtman, 2003). This is particularly surprising 
given the predominance of motion language used when talking about limits and abundant 
proclamations that intuitive, dynamic views of functions should help students understand 
limits. While students frequently used words such as “approaching” or “tends to,” these 
utterances were not accompanied by any description of something actually moving. 
When asked specifically about their use of such phrases, students denied thinking of 
motion and gave an alternate explanation for their words.  
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In terms of abstraction, the informal approaches to limits described in this section are 
susceptible to a similar problem as purely formal approaches. Without other supports, 
they do not provide students with a structure that can guide their investigation of the 
relevant mathematics of subsequent topics. Instead of providing an incomprehensible 
structure, they provide little to no structure, but the result is still that students are left to 
construct an understanding based on disjoint and possibly unguided connections and 
images. The work of understanding subsequent topics is then shifted to representations 
specific to each one (a lack of gaps for continuity, steepness for derivatives, area for 
definite integrals, etc.). Each of these understandings, then are bound to a specific 
representation (typically graphical), and for students to reason conceptually requires a 
translation back and forth between that representation and the problem context. It is 
difficult for students to see and work with the commonalities between these images as 
required, for example, to understand the fundamental theorem of calculus. Further, since 
the central concepts in calculus are defined in terms of limits, important aspects of these 
structures are also lost to the same degree that limits are de-emphasized. 

De-emphasis of limits and alternative foundations of calculus. Due to the well-
documented difficulty of limit concepts, several researchers and reformers have 
suggested providing a more intuitive starting point for calculus. The most common is 
based on using infinitesimals, rounding, and local linearity. This approach mirrors some 
aspects of Newton’s reasoning with fluxions and fluents and Leibniz’s notational 
encapsulation of infinitesimal quantities. Concerns about lack of rigor are addressed by 
referring to Robinson’s set-theoretic work in the 1960’s establishing nonstandard analysis 
as a logical foundation for an infinitesimal approach. Promising aspects of infinitesimal 
instruction are that the foundational concepts are accessible and that, in some cases, 
students used those ideas as integral parts of their reasoning. 

Citing historical and cultural difficulties related to concepts of function, limit, 
infinity, and proof, Tall (1986, 1990, 1992) suggests that a better cognitive starting point 
for calculus might be “local straightness.” Students are introduced to tangents via 
magnification of the graph of a function at a point. This approach, he suggests, allows for 
the investigation of a rich source of concepts: different left and right gradients, functions 
that are locally straight nowhere, etc. Students taught with this approach were much 
better at recognizing, drawing, and reasoning about graphical information for derivatives 
than students in a control group. On the other hand, they tended to describe a tangent as 
passing through two or more very close points on the graph. At least part of these 
students’ difficulties seems to be conflation of the tangent line and the actual graph 
caused by the appearance of the graph as a straight line after sufficient magnification.  

In the infinitesimal approach, computations are performed using an infinitesimal 
element, ε, and standard algebra extended to the infinitesimals. This process is followed 
by “rounding off” infinitesimal terms, so that an expression like 2x ε+  is replaced by 
2x . Tangents are then treated by magnification as described above with the addition that 
the graph is magnified to an infinitesimal scale. Frid (1994) found that although students 
who were given instruction with infinitesimals did not perform significantly better on 
standard computations, they did use the language and notation of rounding as an integral 
part of their explanations. Whether the students’ use of everyday language was of help or 
a hindrance depended on the extent to which they integrated that informal language with 
technical language or symbols in ways congruent with the corresponding concepts.  
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Michèle Artigue (1991) conducted a study with 85 third-year university students 
enrolled in multivariable calculus and physics courses to investigate their understanding 
and use of differential elements. In their courses, students were provided with a tangent 
linear approximation definition, which dominated their descriptions of differentials. At 
the procedural level, however, they reverted to treating differentials algebraically in 
algorithms involving partial derivatives and Jacobian matrices. Students were not able to 
identify conditions in specific contexts necessitating the use of differentials and gave 
incorrect justifications about convergence of approximations based on convergence of 
geometric “slices” in a diagram. Such arguments also may be common for students who 
have not received infinitesimal instruction, however. Thompson (1994) observed 
advanced mathematics students incorrectly justify the fundamental theorem of calculus 
by arguing geometrically that the shape of a three-dimensional object with thickness x∆  
converges to a two-dimensional object as 0x∆ → . Oehrtman (2002, 2003) classified a 
ubiquitous category of such reasoning in terms of “collapsing dimensions” among 
freshmen calculus students and secondary mathematics teachers in a wide variety of 
problem contexts. 

Ideas of local linearity contain conceptual pitfalls when used to supplement a standard 
treatment of calculus. In a class regularly exposed to descriptions of zooming in on 
graphs, students did not ever develop these concepts for use in any of their own 
explanations about limits (Oehrtman, 2002). When directly probed about what they 
would see when zooming in on the graph of a function, only 10 out of 77 gave a response 
that was relevant to the mathematics, and these were all incorrect, suggesting that one 
would see a horizontal line because the vertical change is reduced to a very small amount 
(although this argument seems to imply that one would see a horizontal line). All of the 
other students attended to non-mathematical interpretations such as images of the line 
becoming thicker or blurrier under magnification or that you would see individual 
calculator pixels or atoms of paper. This indicates that images of zooming did not provide 
these students with sufficient structure to guide their reasoning and the related 
instructional process lacked the necessary feedback to prevent major misconceptions. 
Additionally, subsequent analysis-based mathematics courses are rarely taught in terms 
of nonstandard analysis and science and engineering rarely use mathematical models that 
incorporate infinitesimals. 

A Design Approach to Limit Instruction 

The main thrust of this chapter is to frame a set of objectives related to the learning of 
limits taking into account many of the goals introduced above and to outline an 
instructional approach based on research and refined through several teaching experiment 
cycles. One of our main objectives is to base the instruction on activities that are 
conceptually accessible to students. As discussed above, this has been achieved by others, 
notably through infinitesimal approaches, and we have drawn from their successes. A 
second goal is to structure students’ understanding in ways that reflect formal definitions. 
The purpose of this is to lay conceptual groundwork from which formal understandings 
may later emerge but not necessarily to provide those formalizations themselves. Such an 
approach could, of course, leave open the option for an instructor to develop these 
definitions at an appropriate time. Third, we strive to establish an instructional approach 
for limits that serves as a guide for the investigation of all other concepts defined in terms 
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of limits in ways that enhance exploration of their underlying structures. Finally, the 
approach should allow and encourage flexible application in all representations 
(algebraic, graphical, numerical, contextual/descriptive, etc.). The diversity of these goals 
leads to the consideration of an important additional constraint: we require an approach 
that is coherent. That is, the treatment should be mutually reinforcing across the entire 
calculus curriculum, and the process of achieving each goal outlined above should 
support the attainment of the others.  

A design process. From a design perspective we have sought to achieve these goals 
via the following process: 
1. Identify the mathematical structures (elements, operations, relations that result from 

coordinating operations, etc.) that must be reflected in the instructional activities. 
2. Identify a structurally equivalent conceptual system and language base that is 

accessible to students. This is achieved by documenting students’ natural reasoning, 
developing possible frameworks of mathematical expressions for this reasoning, then 
evaluating the effectiveness of structuring students’ activities around these 
mathematical versions of their natural reasoning.  

3. Develop, test, and refine instructional activities in which students apply the 
framework to particular applications. Students work in groups on structurally similar 
problems in a variety of contexts and then present results to each other, reinforcing 
the structure across novel contexts and problems. Design whole-class discussion to 
elicit the common features across all applications. Initial activities should focus on 
familiarizing students with the language, notation, and procedures of the framework 
and assisting them in choosing and applying its tools (e.g., focusing on types of 
questions generally asked, common procedures that may be used, and relevant 
representations of the results). Later activities should encourage students to reason 
through solving problems on their own.  

4. Repeat Step 3 for a variety of applications of the concept. This establishes a second 
level of activities in which students are encouraged to see similarities across different 
uses of the concept and develop a more general and robust abstraction of the 
concepts. 

5. Design tasks to foster formalization as an end result. This includes naming or 
symbolizing a structure that has already been abstracted and can lead to discussion 
and use of formal definitions and proofs. 
The overarching principle is that students should engage in multiple activities that 

reveal and encourage the abstraction of a common structure, and the results of many such 
abstractions should share common features to allow for further levels of abstraction. At 
each level, students should participate in experientially real activities designed to engage 
them in the relevant structures of the underlying mathematics (although not necessarily 
the formal representations) and in seeing common structures across multiple experiences. 
This allows an abstract understanding to emerge over a long period of time with 
significant reinforcement at a variety of conceptual levels. The concept may be 
formalized near the end of this process as a way to concisely capture a well-understood 
structure. 

In the case of limits, a particular application developed in an iteration of Step 3 would 
stem from the limit structure involved in the definition of the derivative (see Figure 2). 
The activities are designed to reflect the predetermined limit structures to provide an 
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appropriate source for later abstraction. Different groups of students present their work 
detailing the operations and relations involved in applying the limit framework to 
different rate of change contexts. Although the contexts are different, the underlying 
structure is the same, and classroom discussion is focused on drawing out the common 
features. As this is repeated for the limit of a function at a point, the definite integral, the 
fundamental theorem of calculus, Taylor series, etc., there is variation in the structures of 
these different topics but certain consistencies in the underlying limit structures.  
 

 
Figure 2. Layers of Abstraction: A common structure for limit concepts is repeated 
within each application then across multiple applications to provide coherence throughout 
the calculus curriculum.  
 

We have identified in our goals, the formal limit definitions as capturing the 
underlying structure to be modeled through instruction. This means students should 
develop to use conceptual tools corresponding to the algebraic entities and expressions in 
the definitions, guided by the types of operations possible within the underlying logical 
connections between these expressions. We have also identified the need to apply this 
structure to solve problems in the contexts of other concepts within the calculus 
curriculum. 

Students’ spontaneous reasoning with approximation concepts. Formal limit 
definitions and structures are often considered beyond the reach of most introductory 
calculus students. Students, however, often naturally reason about limit concepts in terms 
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of approximations in ways that are structurally equivalent to aspects of formal epsilon-
delta and epsilon-N definitions (Oehrtman, 2004). For example, students may be able to 
construct an idea such as “the slope of the tangent line is approximated by slopes of 
secant lines, and the errors (differences between the two slopes) can be made smaller than 
any predetermined bound” even though merely interpreting an abstract statement such as 
“for every ε>0, there is a δ>0 such that whenever 00 x x δ< − <  then 0

0

( ) ( )f x f x
x x m ε−
− − < ” 

may be entirely beyond their reach. Furthermore, instruction can foster the development 
and application of appropriate versions of such reasoning so that it may become a basis 
for understanding the formal statements and incorporating aspects into their reasoning 
with approximations (Oehrtman, 2004). For this reason we take the stance that epsilon-
delta and epsilon-N definitions should only be introduced after multiple rounds of 
instruction that reinforce the conceptual structure of limits in different settings as 
depicted in Figure 2. 

In a study to characterize calculus students’ spontaneous reasoning patterns while 
working with limits, Oehrtman (2002) collected responses to short writing assignments 
from an entire class of 120 students and more in-depth descriptions of students reasoning 
from 25-35 students from regular online writing assignments. Nine students participated 
in initial clinical interviews during which the interviewer prompted for detailed 
explanations of their reasoning about the meaning of limits through standard problems, 
and follow-up interviews were conducted with an additional 11 students. Approximation 
ideas emerged as the strongest and most frequently applied metaphor for limits in this 
study, and students’ reasoning while thinking about approximations were more likely to 
reflect the correct mathematical structures than any of the other contexts that emerged. 
These results may not be surprising since much of calculus is historically motivated by 
needs for numerical estimation techniques, and these ideas continue to influence our 
classroom and textbook presentations. Consider the following quote from a typical 
second-semester calculus student as she explains her understanding of the equality 

3 5 71 1 1
3! 5! 7!sin x x x x x= − + − + . Attend to her use of the words “approximation”, 

“error”, and “accuracy” and how their usage matches the structures in epsilon-N 
convergence arguments. 
 

When calculating a Taylor polynomial, the accuracy of the approximation becomes 
greater with each successive term. This can be illustrated by graphing a function such 
as sin(x) and its various polynomial approximations. If one such polynomial with a 
finite number of terms is centered around some origin, the difference in y-values 
between the points along the polynomial and the points along the original curve 
(sin x) will be greater the further the x-values are from the origin. If more terms are 
added to the polynomial, it will hug the curves of the sin function more closely, and 
this error will decrease. As one continues to add more and more terms, the 
polynomial becomes a very good approximation of the curve. Locally, at the origin, it 
will be very difficult to tell the difference between sin(x) and its polynomial 
approximation. If you were to travel out away from the origin, however, you would 
find that the polynomial becomes more and more loosely fitted around the curve, until 
at some point it goes off in it's own direction and you would have to deal once again 
with a substantial error the further you went in that direction. Adding more terms to 
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the polynomial in this case increases the distance that you have to travel before it 
veers away from the approximated function, and decreases the error at any one x-
value. Eventually, if an infinite number of terms could be calculated, the error would 
decrease to zero, the distance you would have to travel to see the polynomial veer 
away would become infinite, and the two functions would become equal. This is a 
very important and useful characteristic, as it allows for the approximation of 
complicated functions. By using polynomials with an appropriate number of terms, 
one can find approximations with reasonable accuracy. 

 
This student received no special instruction related to ideas about approximation, yet 

the language of approximation, errors, and accuracy figured prominently and 
systematically in her reasoning. Furthermore, the structure of these ideas for this student 
reflect a sophisticated understanding of limits and is integrated with her understanding of 
various aspects of Taylor series, such as the relationship between graphs of a function 
and several Taylor polynomials, pointwise convergence, and the radius of convergence. 
These types of statements were common among students trying to make sense out of limit 
concepts in their own language (Oehrtman, 2002).  

The main components of students’ spontaneous use of approximation ideas to reason 
about limits consisted of an unknown actual quantity and approximations that are 
believed to be close in value to the unknown quantity. For each approximation, there is 
an associated error, 

error = | unknown quantity – approximation |. 
Consequently, a bound on the error allows one to use an approximation to restrict the 
range of possibilities for the actual value as in the inequality 

approximation – bound < unknown quantity < approximation + bound. 
An approximation is contextually judged to be accurate if the error is small, and a 

good approximation method allows one to improve the accuracy of the approximation so 
that the error is as small as desired. An approximation method is precise if there is not a 
significant difference among the approximations after a certain point of improving 
accuracy.  

The structure of this schema parallels the logic of epsilon-N and epsilon-delta 
definitions of limits. For the latter, bounding the error corresponds to the statement “then 
| ( ) |f x L ε− < ”. The need to obtain any predetermined degree of accuracy evokes the 
requirement that the condition hold “for any 0ε > .” A mechanism to generate better 
approximations corresponds to the phrase “there exists a δ  such that whenever 
0 | |x a δ< − < .” Linking these structures together gives the practical statement of being 
able to find a suitable approximation for any degree of accuracy on the one hand and the 
formal epsilon-delta definition on the other. Students’ intuitive descriptions of precision 
such as “There will not be a significant difference among the approximations after a 
certain point.” reflect the structure of Cauchy convergence, if n N>  then | |m na a ε− < . 
These structures are consistent even with a generalized definition of definite integral as a 
net, with partitions partially ordered by refinement. In terms of approximations such a 
description may be even more intuitively accessible than a simple limit definition and its 
restrictions on the types of approximations considered. 

Instructional Activities. The types of tasks discussed in this section have been tested 
and refined in use with three different student populations: a standard introductory 
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calculus class, a supplemental calculus workshop, and a summer professional 
development workshop for high school teachers. Research teams videotaped all 
instructional settings and analyzed data to discern which aspects of the activities 
reinforced the desired conceptual structures and provided students with powerful 
reasoning tools and where potential difficulties might arise. In each round, the 
instructional activities were refined accordingly. 

An initial task that must be accomplished by the instructional activities is to 
systematize students’ spontaneous understandings related to approximations so that a 
relevant and standard set of ideas and language can be developed by the class to use in 
further explorations. Williams (1991) found students’ exhibited strongly held sets of 
beliefs typically surrounding the contexts in which they were first exposed to limits and 
that their viewpoints were extremely resistant to change, even in response to explicit 
discussions about contradictory examples. Students viewed counterexamples as minor 
exceptions rather than reasons to abandon an incomplete concept and evaluated the 
appropriateness of any particular conceptualization based on its usefulness in a given 
setting rather than on its rigor, consistency, or correctness. These are hallmarks of 
spontaneous reasoning which is not volitional or structured (Vygotsky, 1987). The 
development of students’ scientific concepts alongside their spontaneous concepts can be 
slow and difficult, but in any instructional process related to limits, something similar 
will be necessary. The key is to have a strong set of spontaneous concepts (as is the case 
with students’ approximation ideas) to enable and mediate this process. To accomplish 
this, we have developed a variety of heavily “scaffolded” tasks (tasks with significant 
initial instructional support designed to be gradually removed throughout subsequent 
activities as students develop proficiency). Examples are shown in Figures 3 and 4.  
 
In the following problem, you will approximate the slope of the tangent line to a curve at a point. There are 
several important ideas about approximation that are embedded in these exercises that have a close 
relationship to the limit concept. You will need a graphing calculator or a graphing program on a computer. 
 
Graph 2xy =  on a calculator or computer over the interval [ 3,3]−  and take careful note of the general 
shape of the curve. Now zoom in on the graph at 1x = − . That is, change the window to show the graph 
over a smaller interval around 1x = − , like [ 2,0]− . Notice that the graph appears less curved and more like 
a straight line. If you keep zooming in around 1x = − , the graph will appear more and more like a straight 
line. This is called the tangent line to the graph of 2xy =  at 1x = − . The details of tangent lines will be 
developed more fully later in this course. For now, you will approximate the slope of the tangent line. 
1. Look at a region of the curve where it appears fairly straight but still has a slight, noticeable curvature, 

e.g., on [ 2,0]− . Take a point on the curve to the right of the point at 1x = − , and find the slope between 
these two points. (Make sure to keep as many decimal places in your calculation as possible since this 
exercise will require precision.) 

2. Take a point on the curve to the left of the point at 1x = − . Find the slope between these two points. 
3. Are the two slopes from parts a and b both underestimates, both overestimates, or one of each? Explain 

how you know. (Hint: Use the fact that the graph of 2xy =  is concave up, i.e., it curves upwards.) 
4. Using your work from above, give a range of possible values for the slope of the tangent line. Using the 

center of this range as an approximation, what is a bound on the size of the error? 
5. Explain why your bound is just an upper bound for the error and not exactly the error. 
6. Zoom in and use points to the left and right of 1x = −  to find an approximation of the slope of the 

tangent line with error less than 0.0001. Record your work for each computation you do. 
7. Explain why any points between 1x = −  and the points you used in Part f would result in an 

approximation with error less than 0.0001. 
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8. What other x-values can you use for the second point and have the error be less than 0.0001. 
 
Be prepared to answer: 
1. What unknown value were you approximating? 
2. What were your approximations? 
3. Describe what the error for each approximation was. Why is the exact value of the error impossible for 

you to determine? 
4. How did you bound the error? 
5. Explain a procedure for getting an approximation with error smaller than any pre-determined bound. 
Figure 3. A scaffolded activity on the slope of a tangent line designed to reinforce 
approximation structures relevant to limit concepts. This task is used before limits or 
derivatives are formally introduced to lay a foundation for the conceptual structure. 
 
The graph of 

3 7 2( )
1

xf x
x
+ −

=
−

 has a hole. Your task is to determine the location of this hole using the 

approximation techniques you have learned.  
1. Identify what unknown numerical value you will need to approximate. Give it an appropriate 

shorthand name. 
2. Determine what you will use for approximations. Write out your answer algebraically. 
3. Draw the graph using your entire whiteboard. Depict your answers to #1 and #2 on the graph with 

labels for each. 
4. What is an algebraic representation for the error in your approximations? Add a graphical 

representation to your picture. 
5. List three fairly decent approximations. For each one, give a bound for the error and use this to 

determine a range of possible values for the actual value. Add one of these values to your picture and 
depict both the error bound and the range of possible values. Don’t forget to label everything! 

Approximation Error Bound Range of Possible Values 
   
   
   

6. Find an approximation with error smaller than 0.0001. Then describe all of the approximations that 
would have an error smaller than 0.0001. Add this to your picture. 

7. For any pre-determined bound, can you find an approximation with error smaller than that bound? 
Explain in detail how you know. 

Figure 4. A scaffolded activity on the limit of a function designed to reinforce 
approximation structures relevant to limit concepts. 
 

These highly scaffolded activities introduce the students to limit structures using 
applications that are fully developed later in the course, such as the derivative or 
continuity. Other initial tasks engage students in similar activities using different 
applications of limits such as the definite integral structure presented as approximating 
how far a wind-up car would travel and infinite series presented as “mystery” sums. 
Although there are opportunities for some discussions about these other topics at this 
stage, best results were obtained by focusing group and class discussions on the limit 
structures within each application in order to reinforce the use of ideas about 
approximations, errors, and bounding errors. In each case, students were able to reason 
within the given context to determine whether specific approximations were 
overestimates or underestimates then to find an actual bound on the size of the error. 
They were then asked to reverse this process and find several approximations with errors 
smaller than pre-determined bounds. In students’ work and presentations, continual 
emphasis that these two processes are the reverse of one another was necessary to help 
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students understand the distinction and when one way of reasoning would be required 
over the other.  

Subsequent activities provide fewer step-by-step instructions for the students with the 
expectation that they will begin to remember or develop appropriate strategies to solve 
increasingly more sophisticated problems. Through the teaching experiments, we have 
determined that once students are able to complete introductory activities such as the 
ones above, they are ready to begin group work on less scaffolded tasks as shown in 
Figure 5. With some preliminary discussion about average rate of change and intuitive 
interpretations of instantaneous rate of change, these activities prepare students for the 
introduction of the definition of the derivative. 
 

 
Figure 5. Typical partially scaffolded activities developing limit and derivative structures 
through approximation ideas. 
 

h=0 

h=2 

h=1 

h=3 

Instructions: You will approximate the instantaneous rate of change for one of the situations below by 
answering each of the following questions algebraically, numerically, and by representing each answer 
in your diagram: 
0. Draw a large picture of the physical situation for the value of the variable given.  
1. Imagine how things are changing in this situation. List all of the quantities that you think are 

changing. Describe how they are changing. 
2. On the same picture, draw several “snapshots” of the situation.  
3. Label the changing and constant quantities in your drawing. 
4. Describe in more detail what you have been asked to approximate. 
5. What can you use for approximations? 
6. What are the errors? 
7. Find an approximation and a bound for the error. What is the resulting range of possible values for 

your instantaneous rate? 
8. How can you find an approximation with error smaller than a predetermined bound? 
 
Context 1: An object is falling according to the equation 2( ) 100 16h t t= −  feet (with t measured in 
seconds). Approximate the speed when 2t =  seconds. 
 
Context 2: Approximate the instantaneous rate of change of the area of a circle with respect to its 
radius when the radius is 3 cm. 
 
Context 3: The force of gravity between two objects is inversely proportional to the square of the 
distance separating them. Approximate the instantaneous rate of change of the gravitational force with 
respect to distance when two objects are 230 km apart. (Note that all of your answers will involve the 
constant of proportionality.) 
 
Context 4: Approximate the rate of change of the height of water in this  
bottle with respect to the volume of water when the height is 1.5. (Note  
that your answers will involve the size of the spherical portion of the bottle.)  
 
 
 
Context 5: The half-life of Iodine-123, used in some medical radiation treatments, is about 13.2 hours. 
Thus a sample that originally has 6.4 µg of Iodine-123 will decay so that the amount left after t hours 
will be roughly ( ) /13.21

2( ) 6.4
t

I t = µg. Approximate the instantaneous rate at which the Iodine-123 is 

decaying after 5 hours. 
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Eventually, students are given problems with very few prompts regarding 
approximation structures. Consider, for example, the problems posed in Figure 6. 
Typically, such contexts would be presented to students as tasks to construct a definite 
integral and evaluate using the fundamental theorem of calculus. The slight change in this 
formulation requires students to coordinate the product, sum, and limit structures of the 
definite integral across multiple representations. Table 1 provides brief descriptions of 
typical responses expected of and provided by students in previous teaching experiments 
for Context 2 of Figure 6.  
 
Instructions: Draw a picture of the situation, labeling everything possible. Determine a way to 
approximate the quantity requested. Be prepared to explain exactly how you obtained your approximations, 
what your errors are, how you can bound the errors, and how you can find an approximation with an error 
smaller than any predetermined bound. Express your answers algebraically and numerically, labeling 
appropriate quantities in your diagram. 
 
Context 1: For a constant force F to move an object a distance d requires an amount of energy equal to 
E Fd= . Hooke’s Law says that the force exerted by a spring displaced by a distance x from its resting 
length is equal to F kx= , where k is a constant that depends on the particular spring. If the spring constant 
is .155k =  N/cm, approximate to within 1000 ergs the energy required to stretch the spring from a position 
5 cm beyond its natural length to 10 cm beyond its natural length. (Note that 1 erg = 10-5 N·cm.) 
 
Context 2: A uniform pressure P applied across a surface area A creates a total force of F PA= .  The 
density of water is 62 lb per cubic foot, so that under water the pressure varies according to depth, d, as 

62P d= . Approximate to within 1000 pounds the total force of the water exerted on a dam 100 feet wide 
and extending 50 feet under water. 
 
Context 3: The mass M of an object with constant density d and volume v is M dv= . A 10-meter long, 10-
cm diameter pole is constructed of varying metal composition so that its density increases at a constant rate 
from 3 grams per cubic centimeter at one end to 20 grams per cubic centimeter at the other. Approximate 
the mass of the pole with an accuracy of 100 grams.  
 
Context 4: Fluid traveling at a velocity v across a surface area A produces a flow rate of F vA= . 
Poiseuille’s law says that in a pipe of radius R, the viscosity of a fluid causes the velocity to decrease from 
a maximum at the center ( 0r = ) to zero at the sides ( r R= ) according to the function ( )2 2

max 1 /v v r R= − . 

Find an approximation of the rate that water flows in a 1-inch diameter pipe if max 2v =  ft/s with an 
accuracy of 0.01 cubic feet per second (cfs). 
 
Context 5: The volume V of an object with constant cross-sectional surface area, A, and height, h, is 
V Ah= . A large spherical bottle of radius 1 foot is filled to height of 16 inches. Approximate the volume of 
water in the bottle to within 0.01 cubic feet. 
Figure 6. Typical non-scaffolded definite integral questions in terms of approximation. 
 

Algebraic and numerical representations of the actual value, such as shown in the 
shaded cells of Table 1, are usually found last by students. Even when students attempt to 
begin their work by computing an integral, they are typically unable to determine the 
correct integrand until they have found and represented several particular 
approximations. Other than the shaded cells, students typically proceed sequentially 
down the columns by finding and representing the elements of each row in the table in 
turn (Sealey & Oehrtman, 2005). The need to express answers using all representations 
arose naturally as students needed to accomplish various sub-goals. For example, to 
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figure out how to compute specific numerical values, students needed to carefully express 
their ideas on their picture of the dam, going through several revisions of their diagram 
and labeling. For larger computations that required a calculator or computer, students 
were forced to express their work algebraically in order to determine an appropriate 
command. 

A typical group of Sealey’s & Oehrtman’s students wrestled with an incorrect definite 

integral 
50

0
62x dx∫ , then multiplied the pressure at the middle depth of the dam by its 

area to get what they believed was the actual answer. They then quickly determined how 
to find under and overestimates for partitions with ten subintervals then for 50 
subintervals, and thought momentarily that they could not subdivide the partitions any 
further since it was now one foot each. Once they realized how to represent finer 
partitions algebraically and how to enter them into their calculators, they found under and 
overestimates for 100 and 800 subintervals (800 was the largest number of terms allowed 
by their calculators for computing a sum). At each of these steps, they noted that the 
actual force was somewhere between their values, that the error was bound by the 
difference, and that it was much larger than the desired 2000 pounds thus requiring 
further work. At this point, they proceeded to part e and eventually determined they 
would need 7750 subintervals. They became eager to actually try this and broke the 
problem into ten sub-problems with 800 or fewer terms each. All students in the group 
then agreed to find the sum for the first 800 terms to check their work, to work on 
different sums, and finally combine their results at the end. The students worked in a 
highly collaborative and engaged manner with these activities, and there was constant 
talk throughout that reflected the structure of both limits (finding approximations, 
determining bounds for how far off they were, and determining how to achieve the 
desired accuracy) and definite integrals (breaking the problem into sections where 
pressure is nearly constant, computing forces using products, summing the results, and 
developing a general Riemann sum). 
 

Table 1. Descriptions of typical responses in multiple representations for the approximation questions 
applied to the question about the force of water on a dam. Students typically produced responses in the 
order of descending rows with the exception of the two shaded cells which were often produced last. 

 Contextual Graphical Algebraic Numerical 

Unknown Value: 
The force of water 
against the dam 
 

 

 50

0

( ) ( )

62.5 100

b

a
F p x w x dx

x dx

= ⋅
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∫

∫
 

F = 7,812,500  
pounds force due 

to water 

Underwater 
portion of dam 

100 ft 

50 ft 
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xy ⋅⋅= 1005.62

depth

pr
es

su
re
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Approximation: 
Assume constant 
pressure across strips 
and use F P A= ⋅ . 
Using pressure from 
the bottom of strips 
yields an 
overestimate. 
Pressure from top 
yields underestimate 
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Results from these studies also indicate that the activities are effective in helping 

students systematize their reasoning around approximation ideas. Several of these 
students were able to make sense out of the epsilon-delta definition in terms of their 
approximation language at which point they began interchanging language and symbols 
related to approximation and the formal definition and referred to them as being the same 
thing. This is an indicator of structured, scientific reasoning since it is only possible if the 
student is able to recognize the underlying structure despite different sets of terminology. 
 

In subsequent activities, students are given progressively fewer prompts for 
techniques such as finding under and overestimates and are expected to apply these 
techniques appropriately on their own. For each task, they are asked to identify 
contextual, graphical, numerical, and algebraic referents for each of the following 
questions:  

1) What are you approximating? 

Make overestimate on 
bottom strip < bound 

minus 

= bottom overestimate 

 over- 
estimate 

 under- 
estimate 

zero 

Actual 
force 

Total 
approx minus 

overestimate of 
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underestimate of 
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x∆
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2) What are the approximations?  
3) What are the errors?  
4) What are bounds on the size of errors? and  
5) How can the error be made smaller than any predetermined bound?  

Again, questions four and five are emphasized as reciprocal processes so that students 
see and remember the purpose of each. Throughout all of these materials, the structure of 
the underlying limit concepts determines the nature of the instructional activities. Further, 
answering these questions encourages students’ explorations into the relevant structures 
of the concept defined in terms of limits. In activities about the derivative, the need to 
approximate a rate of change to a given quantity results in the exploration of average 
rates of change over small intervals and the analysis of underestimates and overestimates 
based on arguments of increasing or decreasing rate derived from the context. In the 
previous activity on the definite integral and the examples shown in the figure below, the 
structure of refinements to Riemann sums emerges as a result of engaging in the need to 
approximate to a given accuracy. Bob’s quote at the beginning of this chapter in which he 
interpreted the definition of the derivative in terms of approximation is illustrative of the 
type of reasoning that has emerged consistently in the teaching experiments. Exploration, 
presentations, and discussion of multiple contexts exhibiting a common structure 
encourages the abstraction of the limit concept within the particular conceptual strand of 
calculus being covered. Figure 3 shows an example of such an activity for students to 
explore definite integral structures. 
 

Summary 
 

We have outlined several approaches to instruction related to limit concepts discussed 
in the mathematics education research literature. A typical class is often not represented 
by any one of these approaches but reflects a mixture of them. Regardless of the 
approach, however, the literature indicates students have major difficulties understanding 
limit concepts, which in turn impedes their understanding of other fundamental ideas in 
the calculus. In the first part of this chapter, we applied Piaget’s theory of abstraction to 
characterize potential sources of student difficulties for various approaches. By 
highlighting these difficulties, we hope to assist individuals responsible for calculus 
instruction to address typical pitfalls. For example, an initial step in this direction might 
be to directly address common misinterpretations of imagery such as zooming in on a 
graph or viewing the fundamental theorem of calculus as being true as a result of an area 
collapsing in dimension to a line. 

The second half of the chapter is intended to provide an example of designing an 
approach to calculus instruction that is coherent with respect to its treatment of limit 
concepts. The example provided uses common notions about approximations, is based on 
Piaget’s theory of abstraction, and builds a structural understanding through repeated 
engagement in activities that reflect that structure. Certainly many other approaches could 
be designed to accomplish similar results. Our research shows that this design-based 
approach to instruction on limits develops a rich cognitive structure that reflects the 
standard mathematical definitions and applications and is powerful in supporting 
instruction on the other major concepts in calculus defined in terms of limits. This 
approach provides a facility with these major concepts grounded in ideas of 
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approximation and bounding error which are the basis for many applied applications of 
mathematics (e.g., in physics and engineering) and for a rich understanding of the 
mathematical formulas, theorems, and tools used in computational techniques. Finally, 
students are encouraged to develop an intuitive facility with the structures that can form a 
foundation for later abstraction to epsilon-delta and epsilon-N constructions, the basis of 
formalization and proof in upper-division and graduate analysis courses and of 
computational techniques in many applied mathematics and differential equations 
courses. 
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