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The concept of function is central to undergraduate mathematics, foundational to 
modern mathematics, and essential in related areas of the sciences. A strong 
understanding of the function concept is also essential for any student hoping to 
understand calculus – a critical course for the development of future scientists, engineers, 
and mathematicians.  

Since 1888, there have been repeated calls for school curricula to place greater 
emphasis on functions (College Entrance Examination Board, 1959; Hamley, 1934; 
Hedrick, 1922;  Klein, 1883; National Council of Teachers of Mathematics, 1934, 1989, 
2000). Despite these and other calls, students continue to emerge from high school and 
freshman college courses with a weak understanding of this important concept (Carlson, 
1998; Carlson, Jacobs, Coe, Larsen & Hsu, 2002; Cooney & Wilson, 1996; Monk, 1992; 
Monk & Nemirovsky, 1994; Thompson, 1994a).  This impoverished understanding of a 
central concept of secondary and undergraduate mathematics likely results in many 
students discontinuing their study of mathematics. The primarily procedural orientation 
to using functions to solve specific problems is absent of meaning and coherence for 
students and has been observed to cause frustration in students (Carlson, 1998). We 
advocate that instructional shifts that promote rich conceptions and powerful reasoning 
abilities may generate students’ curiosity and interest in mathematics, and subsequently 
lead to increases in the number of students who continue their study of mathematics.  

This article provides an overview of essential processes involved in knowing and 
learning the function concept. We have included discussions of the reasoning abilities 
involved in understanding and using functions, including the dynamic conceptualizations 
needed for understanding major concepts of calculus, parametric functions, functions of 
several variables, and differential equations. Our discussion also provides information 
about common conceptual obstacles to knowing and learning the function concept that 
students have been observed encountering. We make frequent use of examples to 
illustrate the ‘ways of thinking’ and major understandings that research suggests are 
essential for students’ effective use of functions during problem solving, and that are 
needed for students’ continued mathematics learning. We also provide some suggestions 
for promising approaches for developing a deep and coherent view of the concept of 
function.  

Why Is The Function Concept So Important? 

Studies have revealed that learning the function concept is complex, with many high 
performing undergraduates (e.g., students receiving course grades of A in calculus) 
possessing weak function understandings (Breidenbach, Dubinsky, Hawks, & Nichols, 
1992; Carlson, 1998; Thompson, 1994a). We are beginning to understand that the 
conceptions and reasoning patterns needed for a strong and flexible understanding of 
functions are more complex than is typically assumed by designers of curriculum and 
instruction (Breidenbach et al., 1992; Carlson, 1998; Thompson, 1994a). Students who 
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think about functions only in terms of symbolic manipulations and procedural techniques 
are unable to comprehend a more general mapping of a set of input values to a set of 
output values; they also lack the conceptual structures for modeling function relationships 
in which the function value (output variable) changes continuously in tandem with 
continuous changes in the input variable (Carlson, 1998; Monk & Nemirovsky, 1994; 
Thompson, 1994a).  These reasoning abilities have been shown to be essential for 
representing and interpreting the changing nature of a wide array of function situations 
(Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Thompson, 1994a); they are also 
foundational for understanding major concepts in advanced mathematics (Carlson, Smith 
& Persson, 2003; Cottrill et al., 1996; Kaput, 1992; Rasmussen, 2000; Thompson, 1994a; 
Zandieh, 2000). 

It is noteworthy that many of the reform calculus texts of the early 90's, e.g., Ostabee 
& Zorn (1997), Harvard Calculus (Hughes-Hallet & Gleason, 1994), and C4L (Dubinsky, 
Schwingendorf, & Mathews, 1994), included a stronger conceptual orientation to 
learning functions. Such past curriculum development projects and the educational 
research literature are pointing the way for future curricular interventions to assist 
students in developing a robust function conception – a conception that begins with a 
view of function as an entity that accepts input and produces output, and progresses to a 
conception that enables reasoning about dynamic mathematical content and scientific 
contexts. Research suggests that the predominant approach to calculus instruction is not 
achieving the foundational understandings and problem solving behaviors that are needed 
for students’ continued mathematical development and course taking (Carlson, 1998, 
1999, 2003; Oehrtman, 2002).  It is our view that the mathematics community is ready 
for a careful rethinking of the precaclulus and calculus curriculum – one that is driven by 
past work of mathematicians, as well as the broad body of research on knowing and 
learning function and major concepts of calculus. It is also our view that if algebraic and 
procedural methods were more connected to conceptual learning, students would be 
better equipped to apply their algebraic techniques appropriately in solving novel 
problems and tasks.  

Why is the Function Concept So Difficult for Students to Understand?  

As students move through their school and undergraduate mathematics curricula, 
they are frequently asked to manipulate algebraic equations and compute answers to 
specific types of questions. This strong emphasis on procedures without accompanying 
activities to develop deep understanding of the concept has not been effective for 
building foundational function conceptions – ones that allow for meaningful 
interpretation and use of function in various representational and novel settings. Even 
understanding functions in terms of input and output can be a major challenge for many 
students. As one example, 43% of A-students at the completion of college algebra 
attempted to find   f (x + a)  by adding a onto the end of the expression for f rather than 
substituting  x + a  into the function (Carlson, 1998). When probed to explain their 
thinking, they typically provided some memorized rule or procedure to support their 
answers. Clearly these students were not thinking of x + a  as a value of the function’s 
argument at which the function is being evaluated. Another misconception is thinking 
that constant functions (e.g.,  y = 5) are not functions because they do not vary. Not 
viewing y = 5 as an example of a function can become problematic for students; as one 
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example, when considering equilibrium solution functions for differential equations such 
as dy/dt = 2y(y-5) (Rasmussen, 2000). In one study, only 7% of A-students in a college 
algebra course could produce a correct example of a function all of whose output values 
are equal to each other, while 25% of A-students in second semester calculus produced 
 y = x  as an example (Carlson, 1998). Even more problematic, students often view 
functions simply as two expressions separated by an equal sign (Thompson, 1994b). Such 
an impoverished understanding of functions is insufficient to serve as a base for a rich 
understanding of more advanced mathematics. 

It is also common for developing students to have difficulty distinguishing between 
an algebraically defined function and an equation (Carlson, 1998). This is not surprising 
if one considers the various uses of the equal sign and the fact that many instructors refer 
to a formula as an equation. For the student, this ambiguous use of the word equation 
appears to cause difficulty for them in distinguishing between the use of the equal sign as 
a means of defining a relationship between two varying quantities and a statement of 
equality of two expressions. Our recent work has shown that students benefit from an 
explicit effort to help them distinguish between functions and equations. The first two 
authors have developed instructional interventions that promote students’ thinking about 
an equation as a means of equating the output values of two functions, and the act of 
solving an equation as finding the input value(s) where the output values of these 
functions are equal.  

Many students also tend to believe that all functions should be definable by a single 
algebraic formula. This focus often hinders flexible thinking about function situations and 
can lead to erroneous conclusions such as thinking that all functions must always behave 
“nicely” in some sense (Breidenbach et al., 1992). For example, many students tend to 

argue that a piecewise defined function like f (x) =
0, x ≤ 0;

e−1/ x2

, x > 0,






 is actually two 

separate functions or that a function such as Dirichlet’s example, 

  
g(x) =

1, x is rational,
0, x is irrational,




is not even a function at all because it “behaves badly.” 

Similarly, many students have difficulty conceiving of different formulas representing the 

same function, as in the examples f1(n) = n2  and f2(n) = 2k −1 
k=1

n

∑ , which define the 

same function on the natural numbers, albeit through very different algebraic operations. 
Many students also tend to assume that functions are linear or quadratic in cases where 
this assumption is unwarranted, expecting for example, that any “u-shaped” graph is a 
parabola (Schwarz & Hershkowitz, 1999). These tendencies are perhaps not so surprising 
when we consider that functions are typically introduced in the school curriculum 
through specific function types. As such, a working definition in which functions are 
equated with formulas is perfectly reasonable, and even mirrors the historical 
understanding of mathematicians like Euler, Bernoulli, Lagrange, and d’Alembert 
(Kleiner, 1989; Sierpinska, 1992). It is not, however, the view that the Euler himself, and 
subsequently the mathematics community in general, ultimately found to be most useful. 
The modern definition of function was motivated largely by debates between d’Alembert 
and Euler on the nature of a solution to the vibrating string differential equation (Luzin, 
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1998a, 1998b) and by Cauchy’s and others’ attempts to decide the conditions under 
which a limit of a sequence of continuous functions is a continuous function (Boyer, 
1968; Lakatos, 1976). Thus, to use the modern definition of function in an introduction to 
the function concept is to present students with a solution to problems of which they 
cannot conceive. We recommend that school curricula and instruction include a greater 
focus on understanding ideas of covariation and multiple representations of covariation 
(e.g., using different coordinate systems), and that more opportunities be provided for 
students to experience diverse function types emphasizing multiple representations of the 
same functions. College curricula could then build on this foundation. This would 
promote a more flexible and robust view of functions – one that does not lead to 
inadvertently equating functions and formulas.  

Another common difficulty for students is distinguishing between visual attributes of 
a physical situation and similar perceptual attributes of the graph of a function that 
models the situation. When dealing with functions as models of concrete situations, there 
are often topographical structures within the real-world setting itself (e.g., the curves of a 
racetrack, the elevation of a road traveling across hilly terrain, or the shape of a container 
being filled with liquid) that students see as being reflected in the function’s graph. The 
considerable salience of these physical features often creates confusion, even for students 
with a strong understanding of function. Several types of errors can be traced to 
conflating the shape of a graph with visual attributes of the situation (Carlson, 1998; 
Monk, 1992; Monk & Nemirovsky, 1994). Consider the following problem: 
 

 
Figure 1. A problem in which students must distinguish between visual features of a 
situation and representational features of a graph. (From Monk, 1992). 
  

In response to this problem, many students 
tend to copy features directly from the diagram 
into their graph (Monk, 1992). Correctly 
interpreting the situation is not a conceptually 
trivial task. A student must ignore the fact that 
the picture looks like a graph, think of how 
riding uphill (for example) affects the speed of 
the cyclist, then, while ignoring the shape of the 
hill in the picture, determine how to represent 
the result graphically.  

When interpreting graphs such as the one in 
Figure 2, students often confuse velocity for 
position (Monk, 1992) since the curves are laid 
out spatially, and position refers to a spatial 
property. This confusion leads to erroneous 

The following diagram is the side-view of a person cycling up and over a 
hill. Draw a graph of speed vs. position along the path. 

Figure 2. Students fail to interpret 
the function information conveyed 
by the graph. 
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claims such as: the two cars collide at t = 1 hour or that Car B is catching up to Car A 
between   t = .75  hour and   t = 1 hours. In one study, 88% of students who had earned an 
A in college algebra made such mistakes, as did 63% of students earning an A in second 
semester calculus, and 42% of students earning an A in their first graduate mathematics 
course (Carlson, 1998).  

In both these examples, students are thinking of the graph of a function as a picture 
of a physical situation rather than as a mapping from a set of input values to a set of 
output values. Developing an understanding of function in such real-world situations that 
model dynamic change is an important bridge for success in advanced mathematics.  

Students’ weak understandings of functions have also been observed in their 
inability to express function relationships using function notation. When asked to express 
s as a function of t, many high performing precalculus students did not know that their 
objective was to write a formula in the form of “s = <some expression containing a t>.”  
Some students have also exhibited weaknesses in knowing what each symbol in an 
algebraically defined function means. Even in the case of a simple function such as 
  f (x) = 3x , many students are unaware that the parentheses serves as a marker for the 
input, that   f (x)  represents the output values, that f is the name of the function, and that 
3x specifies how the input x is mapped to the output f (x) .  Such weak understandings 
and highly procedural orientations appear to contribute to students’ inability to move 
fluidly between various function representations, such as the inability to construct a 
formula given a function situation described in words (Carlson, 1998).  
 

Dynamic Conceptualizations Needed for Understanding and Using Functions 

In our work to develop and validate the Precalculus Concept Assessment Instrument1 
(Carlson, Oehrtman, & Engelke, submitted), the first two authors found that students’ 
ability to respond correctly to a diverse set of function-focused tasks is tightly linked to 
two types of dynamic reasoning abilities. First, as mentioned above, students must 
develop an understanding of functions as general processes that accept input and produce 
output. Second, they must be able to attend to both the changing value of the output and 
rate of its change as the independent variable is varied through an interval in the domain.  

Understanding limits and continuity requires one to make judgments about the 
behavior of a function over intervals of arbitrarily small sizes. Conceptualizations based 
on “holes,” “poles,” and “jumps” as gestalt topographical features (corresponding to 
removable discontinuity, vertical asymptotes, and jump or one-sided discontinuity, 
respectively) can lead to misconceptions in more complex limiting situations, such as the 
definitions of the derivative and definite integral. For example, students can develop an 
intuitive understanding of the Fundamental Theorem of Calculus with which they explain 
why the derivative of the volume of a sphere ( v = 4

3πr3 ) with respect to the length of its 
radius is its surface area. However, most of these students cannot explain why the same is 

                                                 
1 The Precalculus Concept Assessment Instrument is a 25-item multiple choice instrument for assessing 
students’ understanding of the major aspects of the function concept that are foundational for success in 
beginning calculus. The answer choices include the correct answer and the common misconceptions that 
have been expressed by students in research studies (e.g., interviews that have probed students’ thinking 
when providing specific responses to conceptually based tasks).  
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not true for the volume of a cube ( v = s3 ) with respect to the length of its side (Oehrtman, 
2002). In order to resolve such results conceptually, one must be able to coordinate 
images of changes in the “radius” with the corresponding changes in the volume over a 
range of small variations. For such variations, students must then be able to imagine the 
computation of rate of change of volume and see its connection to the computation of 
surface area. 

To understand the relationship between average and instantaneous rates and the 
graphical analog between secant and tangent lines, a student must first conceive of an 
image as in Figure 3a (Monk, 1987). By employing covariational reasoning (e.g., 
coordinating an image of two varying quantities and attending to how they change in 
relation to each other), the student is able to transform the image and reason about values 
of various parameters as the configuration changes. Being able to answer questions that 
require covarying two quantities, i.e., “When point Q moves toward P, does the slope of 
S increase or decrease?”, is significantly more difficult than being able to answer 
questions about the value of a function at a single point.  

 
 

Analyzing the changing nature of an instantaneous rate also requires the ability to 
conceive of functional situations dynamically. Consider the following question based on 
a classic related rates problem in calculus: 

 
From a vertical position against a wall, the bottom of a ladder is 
pulled away at a constant rate. Describe the speed of the top of the 
ladder as it slides down the wall. 
 

Reasoning about this situation conceptually is difficult for calculus students even 
when they are given a physical model and scaffolding questions (Monk, 1992) and is 
similarly challenging for beginning graduate students in mathematics (Carlson, 1999). 
The standard calculus curriculum presents accumulation in terms of methods of 
determining static quantities -- such as the area of an irregular region of the plane, or the 
distance traveled over a fixed amount of time given a changing velocity. Students 
imagine themselves approximating an area of a region. The area happens to be defined by 
a graph, but the task, to them, is essentially the same as approximating the area of a circle 
with triangles emanating from the circle’s center. Equally important, however, is a 
dynamic view in which an accumulated total is changing through continual accruals 
(Kaput, 1994; Thompson, 1994a). For example, in a typical “area so far” function as in 
Figure 3b, this involves being able to mentally imagine the point p moving to the right by 

Figure 3. Foundational images for the definitions of a) the derivative and b) the 
definite integral. 
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adding slices of area at a rate proportional to the height of the graph. This requires 
students to engage in covariational reasoning (Carlson, Smith & Persson, 2003) and is 
significantly more difficult for students than evaluating and even comparing areas at 

given points (Monk, 1987), for instead of asking them to conceptualize ( )
b

a
m f x dx= ∫ , 

we are asking them to conceptualize ( ) ( )
x

a
F x f t dt= ∫ .  

In interviews with over 40 precalculus level students, the first two authors found that 
students who consistently verbalized a view of function as an entity that accepts input and 
produces output were able to reason effectively through a variety of function-related 
tasks. For example, these students, when asked to find f (g(x))  for specific values of x, 
given in either a table or words that defined the functions f and g, described a process of 
inputting a value into g, with the output of g becoming the input of f, and this output 
providing an output for the composite function f g . However, students who provided an 
incorrect answer to this question were typically attempting to employ some memorized 
procedure. Without understanding, they invariably made a crucial mistake along the way 
such as interpreting   f (g(3))  as meaning “the value of f when g is three,” and by 
mistaking the output of g to be 3, arriving at f (3)  as an answer. As another example, 
when asked to solve the equation, f (x) = 7 , given the graph of f, students who viewed 
this problem as a request to reverse the function process to determine the input associated 
with an output of f, had no difficulty responding to this task. Surprisingly, only 38% of 
1196 students (550 college algebra and 646 precalculus) provided a correct answer at the 
completion of their courses. Those unable to provide a correct answer appeared to be 
applying memorized procedures – they did not speak about a function as a more general 
mapping of a set of input values to a set of output values. Their impoverished function 
view was also revealed by their inability to explain the meaning of function composition 
and function inverse in other settings and their inability to apply function composition to 
define an algebraic formula for a function situation (e.g., to define area as a function of 
time for a circle whose radius is expanding at 7 cm per second).   

According to several studies, calculus students are slow to develop an ability to 
interpret varying rates of change over intervals of a function’s domain. (Carlson, 1998; 
Kaput, 1992; Monk, 1992; Monk & Nemirovsky, 1994; Nemirovsky, 1996; Tall, 1992; 
Thompson, 1994a). According to Thompson (1994a), once students are adept at 
imagining expressions being evaluated continually as they “run rapidly” over a 
continuum, the groundwork has been laid for them to reflect on a set of possible inputs in 
relation to the set of corresponding outputs (p. 27). Such a covariation view of function  
has also been found to be essential for understanding central concepts of calculus (Cottrill 
et al., 1996; Kaput, 1992; Thompson, 1994b; Zandieh, 2000) and for reasoning about 
average and instantaneous rates of change, concavity, inflection points, and their real-
world interpretations (Carlson, 1998; Monk, 1992).  

The following section provides additional elaboration of these essential process and 
covariational understandings of functions. 
 

The Action and Process Views of Functions – A More Formal Examination 
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Developmental research has provided insights about the reasoning patterns essential 
for success in collegiate mathematics. As we have previously discussed, investigations of 
students’ function knowledge have consistently revealed that students’ underlying 
conceptual view is important. Researchers have formalized these consistent observations 
by introducing terms for referencing specific types of conceptual views and their 
development. Specifically, students must move from what is called an action view of 
functions to what is called a process view of functions. 
 
According to Dubinsky & Harel (1992), 

An action conception of function would involve the ability to plug numbers into 
an algebraic expression and calculate. It is a static conception in that the subject 
will tend to think about it one step at a time (e.g., one evaluation of an 
expression). A student whose function conception is limited to actions might be 
able to form the composition of two functions, defined by algebraic expressions, 
by replacing each occurrence of the variable in one expression by the other 
expression and then simplifying; however, the students would probably be unable 
to compose two functions that are defined by tables or graphs. (pp. 85) 
 

Students whose understanding is limited to an action view of function experience 
several difficulties. For example, an inability to interpret functions more broadly than by 
the computations involved in a specific formula results in misconceptions such as 
believing that a piecewise function is actually several distinct functions, or that different 
algorithms must produce different functions. More importantly, reasoning dynamically is 
difficult because it requires one to be able to disregard specific computations and to be 
able to imagine running through all input-output pairs simultaneously. This ability is not 
possible with an action view in which each individual computation must be explicitly 
performed or imagined. Furthermore, from an action view, input and output are not 
conceived except as a result of values considered one at a time, so the student cannot 
reason about a function acting on entire intervals. Thus, not only is the complex 
reasoning required for calculus out of reach for these students, but even simple tasks like 
conceiving of domain and range as entire sets of inputs and outputs is difficult. 

Without a generalized view of inputs and outputs, students cannot think of a function 
as a process that may be reversed (to obtain the inverse of a function) but are limited to 
understanding only the related procedural tasks such as switching x and y and solving for 
y or reflecting the graph of f across the line y = x  (Figures 4a and 4b). This procedural 
approach to determining “an answer” has little or no real meaning for the student unless 
he or she also possesses an understanding as to why the procedure works. Students with 
an action view often think of a function’s graph as being only a curve (or fixed object) in 
the plane; they do not view the graph as defining a general mapping of a set of input 
values to a set of output values. As such, the location of points, the vertical line test, and 
the “up and over” evaluation of functions on a graph are concepts only about the 
geometry of the graph, not about the more general mapping that is conveyed by the 
function, or the meaning that is conveyed by inverting the process for a function that 
represents a real-world situation. Similarly, with an action view, composition is generally 
seen simply as an algebra problem in which the task is to substitute one expression for 
every instance of x into some other expression. An understanding of why these 
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procedures work or how they are related to composing or reversing functions is generally 
absent.  
 

 
 

Students who possess only the procedural orientations of Figures 4a and b, without 
understanding why the procedures work, are not likely to recognize even simple 
situations in which these procedures should be applied. Curriculum and instruction has 
not been broadly effective in building these connections in students’ understanding. A 
recent study of over 2000 precalculus students at the end of the semester (Carlson et al., 
submitted) showed that only 17% of these students correctly determined the inverse of a 
function for a specific value, given a table of function values. 
 

In contrast to the conceptual limitations of an action view, Dubinsky and Harel 
(1992) state: 

A process conception of function involves a dynamic transformation of quantities 
according to some repeatable means that, given the same original quantity, will 
always produce the same transformed quantity. The subject is able to think about 
the transformation as a complete activity beginning with objects of some kind, 
doing something to these objects, and obtaining new objects as a result of what 
was done. When the subject has a process conception, he or she will be able, for 
example, to combine it with other processes, or even reverse it. Notions such as 1-
1 or onto become more accessible as the student’s process conception strengthens. 
(p. 85)  

 
With such a process view, students are freed from having to imagine each individual 

operation for an algebraically defined function. For example, given the function on the 
real numbers defined by  f (x) = x2 +1, the student can imagine a set of input values that 
are mapped to a set of output values by the defining expression for f. In contrast, students 
with an action view see the defining formula as a procedure for finding an answer for a 
specific value of x; they view the formula as a set of directions: square the value for x 
then add one to get the answer. A student with a process view can conceive of the entire 
process as happening to all values at once, and is able to conceptually run through a 
continuum of input values while attending to the resulting impact on output values. This 

Figure 4. Various conceptions of the inverse of a function as a) an algebra problem, b) 
a geometry problem, and c) the reversal of a process. The first two of these are 
common among students but, in isolation, do not facilitate flexible and powerful 
reasoning about functional situations. 
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is precisely the ability required for covariational reasoning introduced above and 
discussed more fully in the following section. In Table 1 we provide a characterization of 
“action views” of functions and their corresponding “process views.”  
 
Table 1  
Action and Process Views of Functions 

Action View Process View 
A function is tied to a specific rule, 
formula, or computation and requires the 
completion of specific computations and/or 
steps. 

A function is a generalized input-output 
process that defines a mapping of a set of 
input values to a set of output values. 

A student must perform or imagine each 
action. 

A student can imagine the entire process 
without having to perform each action. 

The “answer” depends on the formula. The process is independent of the formula. 
A student can only imagine a single value 
at a time as input or output (e.g., x stands 
for a specific number). 

A student can imagine all input at once or 
“run through” a continuum of inputs. A 
function is a transformation of entire spaces.

Composition is substituting a formula or 
expression for x. 

Composition is a coordination of two input-
output processes; input is processed by one 
function and its output is processed by a 
second function.  

Inverse is about algebra (switch y and x 
then solve) or geometry (reflect across 
y=x). 

Inverse is the reversal of a process that 
defines a mapping from a set of output 
values to a set of input values. 

Finding domain and range is conceived at 
most as an algebra problem (e.g., the 
denominator cannot be zero, and the 
radicand cannot be negative). 

Domain and range are produced by 
operating and reflecting on the set of all 
possible inputs and outputs. 

Functions are conceived as static. Functions are conceived as dynamic. 
A function’s graph is a geometric figure A function’s graph defines a specific 

mapping of a set of input values to a set of 
output values. 

 
Understanding even the basic idea of equality of two functions requires a 

generalization of the input-output process, (i.e., the ability to imagine the pairing of 
inputs to unique outputs without having to perform or even consider the means by which 
this is done). Students may then come to understand that any means of defining the same 
relation is the same function. That is, a function is not tied to specific computations or 
rules that define how to determine the output from a given input. For example, the rules 
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−∑ look different; yet produce the same results (and thus define 

the same function) on the natural numbers.  
Students with a process view are also better able to understand aspects of functions 

such as composition and inverses. They are consistently able to correctly answer 
conceptual and computational questions about composition in a variety of representations 
by coordinating output of one process as the input for a second process. Similarly, 
students conceiving of an inverse as reversing the function process so that the old outputs 
become the new inputs and vice-versa (Figure 4c), or by asking “What does one have to 
do to get back to the original values?” were able to correctly answer a wide variety of 
questions about inverse functions (Carlson et al., submitted).    

A process view of function is crucial to understanding the main conceptual strands 
of calculus (Breidenbach et al., 1992; Monk, 1987; Thompson, 1994a). For example, the 
ability to coordinate function inputs and outputs dynamically is an essential reasoning 
ability for limits, derivatives and definite integrals. In order to understand the definition 
of a limit, a student must coordinate an entire interval of output values, imagine reversing 
the function process, and determine the corresponding region of input values. The action 
of a function on these values must be considered simultaneously since another process 
(one of reducing the size of the neighborhood in the range) must be applied while 
coordinating the results. Unfortunately, most pre-calculus students do not develop beyond 
an action view, and even strong calculus students have a poorly developed process view 
that often leads only to computational proficiency (Carlson, 1998). With intentional 
instruction, however, students can develop a more robust process view of function 
(Carlson et al., submitted; Dubinsky, 1991; Sfard, 1991). 

Certainly not every aspect of an action view of functions is detrimental to students’ 
understanding, just as the acquisition of a process view does not ensure success with all 
functional reasoning. However, a process view of functions is crucial for developing rich 
conceptual understandings of the content in an introductory calculus course. The 
promotion of the more general ‘ways of thinking’ that we have advocated should result in 
producing curricula that are more effective for promoting conceptual structures for 
students’ continued mathematical development.  
 

Fostering a Process View of Functions 

We offer the following general recommendations for promoting students’ 
development of a process view of functions: 

Ask students to explain basic function facts in terms 
of input and output For example, ask students to 
determine whether 1( )f g −  is 1 1f g− −  or 1 1g f− −  
and explain their reasoning. In the process, most will 
initially struggle to decide which of the diagrams in 
Figure 5 represents f g . Determining both the correct 
diagram and the correct formula for the inverse 
encourages students to think in terms of a general input-
output process. As another example, students typically Figure 5. Which diagram 

represents f g ? What is its 
inverse? 
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learn to carry out rote procedures when asked to solve equations such as   f (x) = 6  for 
some specified function f; but asking them to find the input value(s) for which the 
function’s output is 6 (both algebraically and graphically) promotes an understanding that 
solving an equation can be seen as the reversal of a function process. As yet another 
example, students typically memorize (without understanding) that the graph of a 
function g given by   g(x) = f (x + a)  is shifted to the left of the graph of f, but asking 
them to discover or interpret this statement as meaning “the output of g at every x is the 
same as the output of f at every x + a ” will give them a more powerful way to understand 
this idea and reinforce a process view of functions. Ask students to determine the domain 
and range of functions based on the problem context, and relate this to answers (possibly 
different) derived from algebraic constraints alone. Other possibilities include asking 
students to explain why composition is associative, to develop the definition of a periodic 
function on their own, or to graph and explain the results of simple function arithmetic. 

Ask about the behavior of functions on entire intervals in addition to single points. 
Focusing on the image of a function applied to an infinite set also encourages students to 
think in terms of a general process. Students should be asked to coordinate such 
judgments with basic compositions and inverses, asking, for example, for the length of an 
interval after being transformed by two linear functions. Similarly, ask students to find 
preimages of intervals as in the definition of limit or continuity and to reverse the process 
of a function even if it is not invertible (e.g., find the preimage of 1 under  f (x) = x2 ). 

Ask students to make and compare judgments about functions across multiple 
representations. Such questions should include multiple algebraic representations to 
reinforce the independence from a formula as well as the standard representations of 
graphs, tables, and verbal descriptions. Students should make such determinations; then 
compare the results for consistency, justifying or discovering why they are the same. For 
example, asking how the various techniques of inverting a function are related reinforces 
seeing a reflection across the line y = x  as switching the roles of independent and 
dependent variable, of input and output. Also helpful are predictions about how a graph 
will look based on how a real-world quantity is changing across its domain, requiring 
simultaneous attention to multiple input-output pairs and translation between 
representations. As an example, when asking students to solve standard problems such as 
‘define the area as a function of time for a circle whose radius is expanding at 7 cm per 
second,’ ask students to begin by constructing a dynamic image of the situation via a 
computer program or by drawing a picture; then ask them to label using algebraic 
symbols the varying quantities in the situation.  After recognizing the 7cm change in the 
radius per second can be represented algebraically by labeling the varying length of the 
radius with the formula r = 7s on the picture, prompt them to determine how to relate area 
to time in seconds.  You could also ask your students to graph the resulting function, A = 

  π (7s)2 , and determine the average rate of change of the circle as s changes from 3 to 4; 
then as s changes from 4 to 5; then as s changes from 5 to 6; then as s changes from 6 to 
7; then ask them to explain in the context of the growing circle what these average rates 
imply about how the area of the circle is growing over the time interval from s=3 to s = 7 
(For additional discussion of the complexities involved in acquiring a flexible view of 
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variable; as an unknown, varying quantity, placeholder, etc., see the Jacobs and Trigerous 
chapter in this volume).  

Building on the Process View of Function: Applying Covariational Reasoning  

As students begin to explore dynamic function relationships such as how speed 
varies with time or how the height of water in a bottle varies with volume, they will need 
to begin considering how one variable (often the dependent variable) changes while 
imagining changes in the other (the independent variable). When coordinating such 
changes, one must be able to represent and interpret important features in the shape of a 
graph of a dynamic function event. As a very simple example, a student who has a strong 
process view of function, might see the algebraic formula, A(s) = s2 as a means of 
determining the area of a square for a set of possible input values. She would be viewing 
the function as an entity that accepts any side length s as input, to produce an output 
value for the area A. She would have no difficulty determining the side of the square for 
given values of the area (reversing the process) or with using any particular 
representation of this function situation (algebraic, tabular, graphical). In this context, the 
student may begin to notice that as the value of s increases, the value of A increases. By 
exploring numerical patterns and/or constructing a graph of this function, the student may 
also observe that as one steps through positive integer values for s, the amount of increase 
of A is getting larger and larger. He or she may also notice that as s increases 
continuously, the area is growing faster and faster. By constructing a graph to represent 
this function relationship, the student may observe that, when s is greater than 0, the slope 
of the graph gets steeper as s increases. When asked to explain why the graph gets 
steeper, the student would also be able to unpack the notion of slope (steepness) by 
describing the relative change of the input (side) and output (area), while stepping 
through values of s.  

The Covariation Framework 

Our work to characterize the thinking involved in reasoning flexibly about 
dynamically changing events has led to our decomposing covariational reasoning into 
five distinct mental actions (Carlson et al., 2002). This decomposition has been useful for 
guiding the development of curricular modules to promote covariational reasoning in 
students. These five categories of mental actions (Table 2) describe the reasoning abilities 
involved in meaningful representation and interpretation of a graphical model of a 
dynamic function situation. In our work, the first two authors have developed beginning 
calculus modules that include tasks and prompts to promote these ways of thinking in 
students. After three iterations of refining these modules (based on our analysis of data of 
students’ reasoning when working through these modules), we are observing dramatic 
gains in beginning calculus students’ covariational reasoning abilities over the course of 
one semester.  

The initial image described in the framework for covariational reasoning is one of 
two variables changing simultaneously. This loose association undergoes multiple 
refinements as the student moves toward an image of increasing and decreasing rate over 
the entire domain of the function (Table 2).  
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Table 2  
Mental Actions of the Covariation Framework 

Mental Action Description of Mental Action  Behaviors 

Mental Action 1 
(MA1) 

Coordinating the dependence of one 
variable on another variable 

• Labeling the axes with verbal 
indications of coordinating the two 
variables (e.g., y changes with changes 
in x) 

Mental Action 2 
(MA2) 

Coordinating the direction of change of 
one variable with changes in the other 
variable 

• Constructing a monotonic straight line  
• Verbalizing an awareness of the 

direction of change of the output while 
considering changes in the input  

Mental Action 3 
(MA3) 

Coordinating the amount of change of 
one variable with changes in the other 
variable 

• Plotting points/constructing secant lines 
• Verbalizing an awareness of the amount 

of change of the output while 
considering changes in the input 

Mental Action 4 
(MA4) 

Coordinating the average rate-of- 
change of the function with uniform 
increments of change in the input 
variable 

• Constructing secant lines for contiguous 
intervals in the domain 

• Verbalizing an awareness of the rate of 
change of the output (with respect to the 
input) while considering uniform 
increments of the input  

Mental Action 5 
(MA5) 

Coordinating the instantaneous rate-of-
change of the function with continuous 
changes in the independent variable for 
the entire domain of the function  

• Constructing a smooth curve with clear 
indications of concavity changes  

• Verbalizing an awareness of the 
instantaneous changes in the rate-of-
change for the entire domain of the 
function (direction of concavities and 
inflection points are correct) 

 
In our work to study and promote students’ emerging covariational reasoning 

abilities, we have found that the ability to move flexibly between mental actions 3, 4 and 
5 is not trivial for students. We have also observed that many precalculus level students 
only employ Mental Action 1 and Mental Action 2 when asked to construct the graph of a 
dynamic function situation.  

When prompting students to construct the graph of the height as a function of the 
amount of water in a bottle (Figure 6), the first two authors found that many precalculus 
students appropriately labeled the axes (MA1) and then constructed an increasing straight 
line (MA2). When prompted to explain their reasoning, they frequently indicated that “as 
more water is put into the bottle, the height of the water rises (MA2).” These students 
were clearly not attending to the amount of change of the height of the water level or the 
rate at which the water was rising. 
 

Figure 6. The bottle problem. 
 

Imagine this bottle filling with water. Sketch a graph of the 
height as a function of the amount of water that’s in the bottle. 
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We have observed that calculus students frequently provided a strictly concave up 
graph in response to this question (Carlson, 1998; Carlson et al., 2002). When probed to 
explain their reasoning, a common type of justification was, “as the water is poured in it 
gets higher and higher on the bottle (MA2).” In contrast, other students who were starting 
to be able to construct an appropriate graph began coordinating the magnitude of changes 
in the height with changes in the volume (MA3). This is exemplified in the strategy of 
imagining pouring in one cup of water at a time and coordinating the resulting change in 
height based on how “spread out” that layer of water is. 

Other students have demonstrated the ability to speak about the average rate of 
change locally for a specific interval of a function’s domain (MA4) but were unable to 
explain how the rate changes over the domain of the function. Even when calculus 
students produced a graph that was correct, they commonly had difficulty explaining 
what was conveyed by the inflection point and why the graph was “smooth” (in 
particular, why it is C1 rather than piecewise linear). Students frequently exhibited 
behaviors that gave the appearance of engaging in Mental Action 5 (e.g., construction of 
a smooth curve with the correct shape), however when prompted to explain their 
reasoning, they expressed that they had relied on memorized facts to guide their 
constructions. They were relying on apparent facts such as “faster means steeper” and 
“slower means less steep,” but they were unable to explain why this was true.  

Engaging Covariational Reasoning Through Analysis Of Function Situations 

 
We offer the following suggestions for strengthening students’ covariational 

reasoning abilities: 
Generally, ask questions associated with each of the mental actions. For orientation 

to any problem, MA1 skills and basic function awareness can be addressed by asking 
what values are changing and what variable(s) influence the quantity of interest (i.e., the 
dependent variable). Is there a single variable that determines that quantity’s values? 
How are the variables related and in what representations can this relationship be 
expressed? For MA2, ask whether a function increases or decreases if the independent 
variable is increased (or decreased). Expect students to make such judgments from 
multiple representations. At an MA3 level, ask students to make judgments about 
amounts of change in the function for constant increments of the independent variable. 
For a dynamic situation, have students draw diagrams representing changes from one 
output variable to the other for each of two nearby intervals of the input variable, and 
represent these changes pictorially and algebraically. Ask students to interpret these 
representations in terms of rate of change in the problem context. To foster MA4 
thinking, have students compute several average rates using various representations and 
find various interpretations for these values and explicitly discuss the meaning of units 
such as meters per second and even non-temporal rates such as square inches per inch or 
degrees Kelvin per meter. For MA5, ask students to anticipate second derivative 
information based on the problem context, e.g., whether the force of gravity between two 
celestial objects will increase at an increasing rate or at a decreasing rate with respect to a 
decreasing distance between them. Ask students to describe the rate of change of a 
function event as the independent variable continuously and dynamically varies through 
the domain. Ask where inflection points are, what events they correspond to in real-world 
situations, and how these points are interpreted in terms of changing rate of change. 
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Ask for clarification of rate of change information in various contexts and 
representations. Expect students to explain statements about rates in real-world contexts 
from algebraic or graphical information, e.g., why does a steeper graph mean the quantity 
represented by the function is increasing faster? Push beyond students’ initial, simplified 
statements such as “the rate of change of position” that ignore the role of time. Require 
explication of both variables involved and relationships about changes in both quantities. 
Finally, a student may be able to make statements indicative of a Mental Action 5 by 
attending only to the geometry of the curve and associated phrases such as “increasing at 
a decreasing rate.” Ask them to unpack such statements in terms of the underlying mental 
actions, in this case perhaps prompts that reveal if they understand what they mean by the 
phrase “increasing at a decreasing rate.” Unpacking what may be pseudo conceptual 
knowledge—knowledge that has been memorized and is not based on an underlying 
conceptual structure and understanding, can be achieved by posing pointed questions that 
prompt students to reveal their underlying conceptions (e.g., why is the graph concave up 
or why is the curve “smooth” rather than piecewise linear?) Such questions typically 
reveal if the student is merely spouting a memorized rule or fact, or if the statement is 
supported by an understanding of why the rule or statement is true.  

Extending Ideas of Covariation To Higher Dimensions 

The idea of covariation is fundamentally that of parametric functions. As one 
imagines scanning through values of one variable and keeping track of values of another 
variable, one is essentially imagining the parametric function (x,y) = (t,f(t)). Once 
students have developed the ability to reason covariationally, it is a natural (but not 
small) step to reason about functions defined parametrically by (x,y) = (f(t), g(t)). For 
example, the graph in Figure 7 is (x,y) = (sin10t, cos20t), 0 ≤ t ≤ 1. Students can 
conceptualize this graph by generating the graphs of f(t) = sin10t and of g(t) = cos20t 
separately and then tracking the values of x = sin 10t and y = cos 20t as t varies. This 
same technique can be used to conceptualize graphs of phase space, (x,y) = (f(u), f’(u)), in 
differential equations. 
 

x

y

 
Figure 7. Graph of (x,y) = (sin10t, cos20t), 0 ≤ t ≤ 1. 
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Covariation can also support thinking about curves in space. To continue the 
previous example, imagine that t in Figure 7 is actually an axis, coming straight at your 
eyes. If you now keep track of t as well as x and y, you get a sense that each point on the 
graph in Figure 7 is actually some distance toward you from the page. If you rotate your 
position relative to the graph so that you can see an axis that is perpendicular to x-y, then 
you have engendered an image like that in Figure 8. 

x

y

z

 
 
Figure 8. Graph of (x,y,z) = (sin10t, cos20t, t), 0 ≤ t ≤ 1. As t varies, points in Figure 7 
with coordinates (sin10t, cos20t) are projected t units perpendicularly from the x-y plane. 
 

Finally, ideas of covariation can help students visualize functions of more than one 
variable. For example, we can envision the behavior of z = f(x,y) in a multitude of ways, 
such as thinking of y (or x) as a parameter. The graph of f, then, can be visualized as 
being generated by a family of functions z = fy(x) as y varies. Figure 9 shows three 
successive graphs corresponding to z=x3+yx at y = -2, at y = 

-1, and at y = 1, where in each 
graph, x varies from -2 to 2. Figure 10 shows the surface swept out by fy(x) = x3 + yx as y 
varies continuously from -2 to 2, thus generating the graph of f(x,y) = x3 + yx, -2 ≤ x ≤ 2,  
-2 ≤ y ≤ 2. 
 

x 

z  

y  

y = -2  
y = -1 

x 

y 

z 

y = 1 

x 

y 
z 

 
Figure 9. Graphs of z = fy(x) for y = -2, y = -1, and y = 1. 
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(b) 

Figure 10. Graphs of z = f(x,y), -2 ≤ x ≤ 2, -2 ≤ y ≤ 2. 
 

Concluding Remarks 

A mature function understanding that is revealed by students’ using functions 
fluidly, flexibly, and powerfully is typically associated with strong conceptual 
underpinnings. Promoting this conceptual structure in students’ understanding may be 
achieved through both curriculum and instruction including tasks, prompts, and projects 
that promote and assess the development of these “ways of thinking” in students. We 
advocate for greater emphasis on enculturating students into using the language of 
function in order to develop facility in speaking about functions as entities that accept 
input and produce output, a more conceptual orientation to teaching function inverse and 
composition, the inclusion of tasks requiring simultaneous judgments about entire 
intervals of input or output values, and the development of students’ ability to mentally 
run through a continuum of input values while imagining the changes in the output 
values, with explicit efforts to also promote, at the developmentally appropriate time, the 
covariational reasoning abilities described in this chapter. Our work also suggests that 
students would benefit from explicit efforts to promote their understanding of function 
notation. Additionally, we call for evaluations of students’ mathematical development 
and readiness to include assessments that measure the foundational reasoning abilities 
needed for a robust function conception. As one example, when teaching calculus I, we 
begin the semester by assessing students’ function understanding. This provides useful 
knowledge for our selecting and creating tasks to address their misconceptions and 
promote the reasoning abilities and understandings that we have described in this chapter.  
We have found that the time spent at the beginning of calculus to strengthen students’ 
function conceptions is crucial for their understanding the major ideas of calculus (For 
further reading on how the covariation perspective to teaching functions influences 
students understanding of ideas of calculus, see Thompson and Silverman, this volume). 
(Note that the precalculus concept assessment instrument (PCA) and calculus modules 
mentioned in this chapter can be acquired by contacting the second author at 
marilyn.carlson@asu.edu.) You may also find it useful to assess your students’ thinking 
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and reasoning on tasks that we have discussed in this chapter. Lastly, we advocate that 
you regularly pose questions and engage your students in tasks that will allow you to 
gauge your students’ development in understanding major ideas of your courses. This 
instructional perspective will require that you have clarity on the mathematical thinking, 
understandings, and problem solving behaviors that your students need to acquire to 
advance their mathematical development. It also sets up a challenge for you to scaffold 
your instruction based on what your students know and understand, but should in turn 
lead to greater success for your students and a more rewarding instructional experience 
for you.  
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