Using Online Courses to Link Research to Practice in Mathematics Classrooms

JoAnn Cady P. Mark Taylor
Thomas E. Hodges

"Life is good for only two things, discovering mathematics and teaching mathematics."
- Simeon Denis Poisson
Acknowledgements

The preparation of this presentation was supported in part by a grant from the Appalachian Mathematics and Science Partnership. Any opinions expressed herein are those of the authors and do not necessarily reflect the views of the Appalachian Mathematics and Science Partnership.
Teacher Preparation

- Middle School licensure
 - K-8
 - 7-12
- Neither licensure adequately addresses National Middle School Association Standards
Goals of Online Classes

1. To encourage beliefs that support inquiry-based practices
2. To provide opportunities to enhance both content and pedagogical content knowledge
3. Focus the teachers’ decision-making processes on evidence of student learning
4. To provided easy access to professional development
Course Development Rationale

- Identify teachers’ beliefs
 - Beliefs influence instructional decisions
 - Beliefs influence learning from a cognitive perspective

- Building teachers’ content knowledge by focusing on the development of students’ content knowledge
 - Pedagogy \rightarrow PCK \leftarrow Content Knowledge
 - Pedagogy \leftarrow PCK \rightarrow Content Knowledge
Course Development Rationale

❖ Teachers as learners of mathematics
 (Ball, 1996; Loucks-Horsley, Hewson, Love, & Stiles, 1998; Ma, L., 1999)

❖ Using standards-based middle school curricula in professional development
 (Ball & Cohen, 1996; Beckmann, et.al., 2004; Reys, Reys, Beem, & Papick, 1999)
Course Development Rationale

- Using cases of mathematics instruction (Merseth, 1996; Stein, Smith, Henningson, & Silver, 2000)

- Collaborative examination of student work in order to increase teachers’ flexibility in mathematical thinking (Franke & Kazemi, 2001; Wilcox & Jones, 2004)
Course Design

- Synchronous, asynchronous, & face-to-face
 - Centra software
 - Blackboard software
Course Design

❖ 4 Courses
 ▪ rational number
 ▪ algebra
 ▪ geometry
 ▪ data analysis and probability

❖ Cohort groups
 ▪ 3-5 members @ local schools
 ▪ Each Tuesday 4-7 pm
Centra Software

- Order of operations (CMS)
 - Integers
 - Fractions
 - Decimals
 - Exponents

- Patterns (NWMS)
 - Number patterns
 - Extending patterns

- Concept of unknown numbers/variables
 - Symbolic representations

- Integers
 - Positives and negatives
 - Where are they and why are they?

- Inequalities
 - Concept of inequality
 - Inverse operations
Centra Software & Notetaker
Data Sources

- Class assignments
- Online class recordings
- Discussion Board postings
Data Analysis

- Constant comparative
- Generating themes
- Grounded Theory
Results

Emerging Themes

- Language - mathematical terms
- Use of multiple representations
- Use of activities that encourage social construction of ideas
- Autonomous learners
- Integration with other concepts & disciplines
Results

- Language - mathematical terms
 - Inverses, reciprocals, and opposites
 - Capacity vs. volume
 - Variables vs. Symbols
Results

- Use of multiple representations
 - Division of fractions
 - Probability problems selected
Results

- Use of activities that encourage social construction of ideas
 - Geometric definitions
 - Pythagorean theorem
 - Algebra sorting activities
Results

❖ Autonomous Learners

▪ Big Ideas
▪ Respectfully challenging peers
▪ Shift in roles of instructor and students
Results

- Integration with other concepts & disciplines
 - Algebra and geometry
 - Measurement and science
 - Data and science
Challenges

- Technology
 - Learning curve
 - Speed & Down time
 - Shift in thinking from deficit model to an abundance model
Challenges

- Students could “hide”
- Modeling inquiry practices
 - Making instructional decisions based on student work
 - Using manipulatives
Contact Information

JoAnn Cady
jcady@utk.edu

P. Mark Taylor
pmark@utk.edu

Tommy Hodges
thodges3@utk.edu