Uniform and Accelerated Motion

Dorina Kosztin

Meera Chandrasekhar
Department of Physics and Astronomy University of Missouri, Columbia

Support: National Science Foundation Math-Science Partnership Institute Grant NSF DUE 0928924
www.physicsfirstmo.org

What is A TIME for Physics First?

Physics First is a national movement to teach a year-long Physics course in 9th grade
\square The National Science Foundation has funded a new grant for teacher intellectual leadership and professional development, 2009-2014
$\square 80$ Missouri $9^{\text {th }}$ grade teachers recruited in Fall 2009, 40 of whom will start the summer academy series in 2010, 40 in 2011: see www.physicsfirstmo.org

- This grant follows a MO-DESE funded partnership led by Columbia Public Schools and Univ. of Missouri-Columbia to develop curriculum and conduct PD, 2005-08

Curriculum (2010-14)

\square Year 1: Electricity, Uniform and Accelerated Motion, Forces and Newton's Laws
\square Year 2: Application of Newton's Laws, Energy, Planetary Motion, Heat, Waves
\square Year 3: Flexible topics
\square Pedagogy - based on Modeling, Inquiry \& 5E
\square Today - parts of Unit 2: Uniform and Accelerated Motion

Structure of a unit
\square Big ideas
\square Students' misconceptions
\square Unit objectives
\square Sequence of concepts (5E)
\square Framing questions
\square Activities and experimental design labs
\square Reading pages
\square Practice problems
W.

Big Ideas

Position, distance and displacement have different meanings.
\square Uniform motion means that an object travels equal distance in equal time intervals.
\square Uniform accelerated motion means that velocity changes by equal amounts in equal time intervals
\square An object that accelerates is speeding up, slowing down, or turning.
\square Motion can be described in different ways: with words, graphs, motion diagrams and mathematical models.

Students' Misconceptions

\square Same position means same speed
\square Position and velocity graphs show the path of the particle
\square Difficulty relating real world motion to a graph
\square Leading particle moves at a faster speed
\square Velocity must always be positive
\square The meaning of the phrase "graph a-versus-b".
\square Identify quantity in a graph that will answer the question (coordinate, slope, area)
\square Same velocity means same acceleration for two objects
\square Zero velocity means zero acceleration

Objectives for the "Constant Speed Car Lab"

\square Design experiment, collect data, draw x vs. t graph
\square Interpret slope, units of slope, and intercept of straight line graph
\square Calculate speed from data table, relate to slope
\square Unit conversion
\square Distinguish between position and distance
\square Distinguish between time and time intervals
\square Mathematical expression for speed
\square Relate different slopes of the x - t graphs to different speeds
\square Create motion diagrams

Activity: Constant Speed Car Lab

앙

Big Understandings and Skills

\square Given an XVS. tgraph, you should be able to:

- describe the motion of the object (starting position, direction of motion, velocity)
draw the corresponding v vs. t graph
- draw a motion diagram for the object.
- determine the average velocity of the object (slope).
- write a mathematical expression that describes the motion.

Uniform Motion:
 v vs t graph from experiment

- velocity is constant
- slope of velocity graph represents the rate at which velocity changes = no slope, no change
- calculate the distance traveled as the area under the v vst graph

Big Understandings and Skills

\square Given a vvs. \boldsymbol{t} graph, you should be able to:

- describe the motion of the object (direction of motion, how fast)
- draw the corresponding X VS. t graph
- determine the change in position of the object (area under curve).
- draw a motion diagram for the object.
- write a mathematical expression to describe the motion.
- Build a motion diagram and relate it to the v vs t graph
- Length of each arrow represents distance traveled per unit time $=$ velocity \rightarrow same length, velocity is constant
- Velocity arrows indicate the direction of motion

Uniform Motion: Position vs time graph

앙

앙

Uniform Motion: Verbal Description of Motion
An object starts moving in the positive direction from position x_{1} to position x_{2}, with a constant speed, for a time interval $\Delta t_{A}=t_{2}-t_{1}$. where $t_{1}=0$ seconds. During the time interval $\Delta t_{B}=t_{3}-t_{2}$ the object does not move, its position is not changing and its velocity is therefore zero. During the time interval $\Delta t_{c}=t_{5}-t_{3}$ the object moves faster than during the time interval $\Delta \mathrm{t}_{\mathrm{A}}$ (it moves with a higher speed)

Uniform Motion: Motion Diagrams

․ㅏㅇ

Uniform Motion: Mathematical Description

\square Change in position: $\quad \Delta x=x_{f}-x_{i}$
\square Change in time: $\quad \Delta t=t_{f}-t_{i}$
\square Speed and slope:

$$
\text { slope }=\frac{\text { rise }}{\text { run }} \Rightarrow \text { slope }=\frac{\Delta x}{\Delta t} \Rightarrow \text { slope }=\text { speed }=v=\frac{\Delta x}{\Delta t}
$$

\square Units for slope: m/s
장

Accelerated Motion
\square How is the v vs t different for the accelerated motion?
\square How does the motion diagram looks like?
\square Demo: the spark timer

\#
 -

Accelerated Motion: x vs t graph from experiment

- graph is not linear => velocity is not constant
- slope is not constant => can only calculate slope at a point = instantaneous velocity
- build a v vs t graph

Accelerated Motion:

 v vs t graph from experiment- velocity is not constant, changes linearly with time
- slope of velocity graph represents the rate at which velocity changes = acceleration
- calculate accelerations as the slope of the v vs t graph.
-Calculate the distance traveled as the area under the v vs t graph

Accelerated Motion:
v vs t graph

앙

Accelerated Motion: Motion Diagram

- Build a motion diagram and relate it to the v vs t graph
- Length of each arrow represents distance traveled per unit time $=$ velocity \rightarrow it changes
- Difference between length of arrows (velocities) is the same $=$ acceleration \rightarrow it is constant
- Velocity arrows indicate the direction of motion
- Acceleration arrows show if velocity increases or decreases

Accelerated Motion Motion Diagram

