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them is to link experts’ habits of mind 
to fundamental cognitive processes so 
we can narrow the skillsets down to 
more basic competencies that can be 
taught to novices.31

Linking CT to cognition is not a new 
idea. In fact, it is what led to the design 
of electronic computing 80 years ago 
when Alan Turing27 suggested that if 
thoughts (that is, information) can 
be broken up into simple constructs 
and algorithmic steps, then machines 
can add, subtract or rearrange them 
as our brains do. Electronic machines 
have since taken many complex and 
voluminous computations off our 
brains, further supporting the view of 
brain as a biological computational 
device.19 Unfortunately, understand-
ing how biological computing gener-
ates cognition from electrical activities 
of neurons has been hindered by the 
fact that it involves a delicate, inac-
cessible, and complicated organ, the 
brain. The good news is that technol-
ogy has recently broken some of these 
barriers. For example, neuroscientists 
now use imaging techniques to un-
derstand brain mechanisms that take 
part in receiving, storing, retrieving, 
and processing information. Cognitive 
psychologists use similar techniques 
to study where in the brain particular 
perceptual and cognitive processes 
occur. At the same time, cognitive and 
computer scientists form theories and 

T
HE  ID E A  OF adding compu-
tational thinking (CT) to a 
child’s analytical ability goes 
back almost four decades,20 
yet its recent promotion29 

as an “attitude and skill set” for every-
one has helped popularize it all over 
the world. While periodic reviews on 
the status of CT education6,11 indicate 
wide agreement on what comprises 
CT, there is a struggle in the field by 
teachers and educators on how to in-
tegrate CT practices and skills into 
K–12 education. Many researchers and 
educators who initially supported the 
idea of teaching CT skills to everyone 
are now wary of its promise. Some of 
the remaining trouble spots include 
definition, methods of measurement, 
cognitive aspects, and universal value 
of CT.6 This Viewpoint presents an al-
ternative perspective on computation-
al thinking, positioning CT as a link to 
cognitive competencies involved not 
only in science and engineering but 
also in everyday life. 

A major source of current troubles 
with CT comes from linking it to elec-
tronic computing devices and equating 
it with thinking by computer scientists. 
Accordingly, many of currently rec-
ognized CT skills are associated with 
problem solving and use of electronic 
devices with a goal of preparing tomor-
row’s programmers.11,29 A decade of 
discourse and experimentation has yet 

to produce ways to separate CT from 
programming and the use of electronic 
devices. And, the lack of such separa-
tion continues to preclude us from 
capturing the cognitive essence of CT.

Teaching experts’ habits of mind 
to novices is inherently problematic 
because of prerequisite content knowl-
edge and practice skills needed to en-
gage in the same thinking processes, 
not to mention the cost of providing 
them a similar environment to con-
duct inquiry and design. This prob-
lem is not unique to CT education; it 
also applies to scientific thinking (ST) 
and engineering thinking (ET) educa-
tion.7,26 A remedy that applies to all of 
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The latest developments in neuro-
science have contributed significantly 
to our understanding of learning in 
relation to information retrieval.4 For-
getting is now considered to be a good 
thing because it forces the learner to 
use effort to cognitively engage and 
recall or reconstruct newly acquired 
concepts through different neural 
pathways or links that exists and are re-
trievable. So, the more links to associ-
ated concepts, the higher the chances 
of recalling the newly acquired concept 
when needed later. Furthermore, cog-
nitive retrieval practices attempted at 
different times, various settings, and 
contexts are good because every time 
the recall is attempted it establishes 
more links that will help the remem-
bering and learning. Exposure to new 
concepts, then, through links to multi-
ple views from different fields of study 
is an effective retrieval strategy recom-
mended by cognitive psychologists.

Basically, retrieval sounds like an 
act of creative reimagination and what 
is retrieved is not the original pattern 
but one with some holes or extra bits. 
Consequently, neuroscientists see little 
or no distinction now between the acts 
of information storage/retrieval and 
the act of thinking. Such a consolidated 
view of storage, retrieval, and thinking 
is very much in tune with our model 
(Figure 1) of how information behaves 
naturally. Applying it to translate what 
neuroscientists say about storage and 
retrieval,4 we posit that a memory or a 
newly learned concept can be a com-
bination or outcome of previously 
formed memories and concepts, each 
of which might also involve another 
level of vast network of concepts and 
details mapped onto the brain’s neural 
network in a hierarchical way. When 
new information arrives, it lights up 
all related cues, neurons and path-
ways in a distributive process that is 
similar to the top-down action, where 
new concept is broken up into related 
pieces. By the same token, retrieving a 
memory is a reassembly of its original 
pattern of neurons and pathways in 
an associative process that is similar to 
the bottom-up action.

Accordingly, the brain attempts to 
analyze deductively every new concept 
and information that it encounters in 
terms of previously registered mod-
els—objects, faces, scenarios, and so on. 

models of the mind to study how com-
putation may be generating thinking. 

Electronic computers have evolved 
to showcase many structural and func-
tional similarities with the brain. So, 
we may have a chance to better under-
stand how the brain works through 
easier access, use, and control of elec-
tronic devices. I suggest the similari-
ties arise from quantifiable aspects of 
information constructs, as suggested 
by Alan Turing,27 and the appearance 
of a universal mechanism (see Figure 
1) by which quantifiable things form 
and evolve.30 That is, like the granular 
matter, information constructs either 
unite associatively, as shown by the 
bottom-up arrows in Figure 1, to make 
bigger constructs or break down dis-
tributively, as shown by the top-down 
arrows, to smaller ones. Computing 
devices, be it electronic or biological, 
are likely to use similar ways to track 
and tally this invariant behavior of in-
formation. Another reason for similari-
ties is the design, use, and control of 
electronic computing devices by bio-
logical computing agents. 

Continuing the legacy of Turing 
to focus on device-independent pro-
cesses (see Figure 2), we want to cre-
ate more links between CT and cogni-
tion by identifying common patterns 
of information processing that are 
known to facilitate thinking. This 
may give us a framework to suggest a 
universal definition for CT—thinking 
generated and facilitated by computa-
tion, regardless of the device that does 
the computation—along with an elec-
tronic computing methodology to fa-
cilitate relevant cognitive processes. 
While the CS community is willing to 
modify its original definition along 
these lines,1,28 current curricular CT 
practices still deal only with teaching 
of electronic CT skills. 

A clear distinction should be made 
between electronic and biological CT 
to more effectively integrate desired CT 
skills to the relevant grade-level curri-
cula. Having dealt with many issues of 
CT education for three decades at both 
college and K–12 levels,30–34 I want to 
present an interdisciplinary perspec-
tive to address both cognitive and cur-
ricular aspects of CT by merging CS 
education research with concepts from 
epistemology, cognitive and neurosci-
ences as briefly described here.

Neuroscience’s View of Information 
Storage, Retrieval, and Thinking
Contrary to the early compartmental-
ized and centralized design of electron-
ic computers, the brain employs a dis-
tributed network of neurons to store, 
retrieve, and process information. In-
formation gets stored into the mem-
ory in the form of a specific pattern of 
neurons placed on a pathway and fired 
together,14 as shown in Figure 3. There-
fore, the number and strength of neural 
pathways are key to improving storage 
and retrieval of information. 

Humans are born with ~100 billion 
neurons that get connected to each 
other in various ways as we grow older. 
Other key factors that affect our mental 
growth include the functionality that 
each neuron or groups of neurons as-
sume, the size they grow into, and the 
placement in different parts of the brain 
that they migrate towards. More impor-
tant is the number of neural connec-
tions, which could go up to 100 trillion. 
As we learn things, new connections are 
being made while the existing ones are 
strengthened, weakened, or even elimi-
nated if not revisited often enough. 

Neuroscientists see 
little or no distinction 
now between the 
acts of information 
storage/retrieval and 
the act of thinking.

Figure 2. Information processing by 
electronic and biological computing 
devices include both device-independent 
and device-dependent processes.
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Whether the causes are structural 
or non-structural, there is enough evi-
dence about a duality in information 
storage, retrieval, processing, and rea-
soning that warrant further examina-
tion. In fact, both structural (hardware) 
and non-structural (software) drivers 
of our intelligence, reasoning, and 
thinking have a common mechanism 
that is consistent with Figure 1. For 
example, the act of modeling by our 
mind to assign value, cost, and goals 
to our thoughts before decision-mak-
ing meshes well with the tendency 
for simplification (bottom-up flow 
of information in Figure 1). A clear 
advantage is that it makes it possible 
to work with approximate, abstract, 
or average representations, thereby 
bringing closure to an otherwise un-
ending worry or inquiry about details. 
Accordingly, the human brain uses 
modeling not only for mental repre-
sentation of external objects but also 
for wrapping up its own computations 
so it can compare their values and costs 
before deciding,13 a cognitive mecha-
nism that epistemologists came up with 
two centuries ago, as noted here.

Epistemology of  
Knowledge Development
Epistemology is a branch of philosophy 
that studies how we know what we know. 
At its core are questions like ‘what is 
true knowledge and its source?’ and ‘how 
can we be sure of what we know?’ While 
scientists such as Galileo laid a strong 
foundation for building knowledge 

And, as our knowledge grows further, 
the relationships among registered in-
formation eventually lead to interplay 
of various combinations and scenarios 
of existing models that eventually end 
up inductively clustering related details 
into conclusions, generalizations, and 
more inclusive models of informa-
tion.25 As a result, the details our brain 
registers and stores and the hierarchi-
cal connections it establishes between 
them, along with these generalizations 
and conclusions, build over time a pyr-
amid-like structure (see Figure 1) that 
we have come to call mind.19 Cognitive 
scientists often use a software anal-
ogy to distinguish it from the brain as 
noted here.

Cognitive View of 
Information Processing
While the distributed structure of neu-
rons and their connections (hardware) 
influence cognitive processing (soft-
ware), the relationship between soft-
ware (mind) and hardware (brain) is 
not a one-to-one relationship. Accord-
ing to the biological computing view of 
mind,19 its processing of information 
consists of a hierarchy of many pat-
terns and levels that may range from 
basic computations to more complex 
functions (sequence or structure of 
instructions) and models (mental rep-
resentations) of perceived reality and 
imaginary scenarios. 

While structural and functional sim-
ilarities improve our understanding, I 
do not suggest the brain works exactly 
like electronic computers. Modeling the 
mind as a rational decision-making 
computational device has yet to fully 
capture mental representations and 
emotions.10 In fact, we may never be 
able to model the human brain unless 
we understand what intelligence is and 
how it is possible for the human brain 
to make decisions on as much electric-
ity as consumed by a dim light. Many 
believe it does so by simplification and 
avoidance of exhaustive computations 
and evaluations of hypothetical scenari-
os surrounding an issue.13

To explain the root causes of the 
brain’s efficient operation, neuropsy-
chologists and evolutionary biologists 
point to some structural (hardware) 
interference by an autopilot limbic 
system to bypass, simplify, or reduce 
more elaborate cognitive functions of 

an evolved neocortex. In fact, it appears 
we are caught up between two compet-
ing brains24 whose operations can be 
well understood by the flow of informa-
tion processing in Figure 1. Typically, 
there is a cyclical tendency between 
simplifying things (bottom-up) and 
digging things deeper (top-down). One 
of these processes is fast, effortless, au-
tomatic, inflexible, nonconscious, and 
less demanding of working memory, 
while the other is slow, effortful, con-
trolled, conscious, flexible, and more 
demanding of working memory.8

Cognitive scientist Read Montague19 
points to some non-structural (soft-
ware) tendencies to account for our 
brain’s energy-efficient operation. He 
suggests that concern for efficiency, 
as part of our survival, leads to assign-
ing value, priority, cost, and goals to 
our thoughts, decisions and action. To 
do this, the mind carries out compu-
tations, builds models, and conducts 
evaluative and hypothetical simula-
tions of different scenarios. This may 
slow down and add imprecision to 
decision-making. However, because of 
bundling similar things together via a 
model, the overall process still ends up 
saving us from undertaking exhaustive 
and repetitive computations of various 
scenarios. According to Montague, the 
tendency to make trade-offs between 
simplicity and complexity and between 
details and generalizations is the root 
driver of our intelligence, and why we 
have pushed ourselves to be smarter 
over time. 

Figure 3. Illustration of a distributed network of neurons firing and wiring together. 
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Philosophers and psychologists have 
been studying the parts-and-whole dy-
namics since Plato9 to explain the na-
ture and human behavior. Recently, 
with help from technology, cosmolo-
gists and cognitive scientists have also 
been searching for a universal process 
that may be guiding the growth of all 
networked systems, ranging from the 
tiny brain cells to atoms, to the Inter-
net, and even the galaxies. The view 
that such a process may be described 
computationally, as in Figure 1, is now 
gaining traction because formation and 
evolution of an abstract idea or a com-
putational model of information ap-
pears to be no different than that of a 
system of physical particles.30 If so, then 
not only can we learn from an ongoing 
millennial argument of such a universal 
topic, but we can also put computing at 
the center of a discourse well beyond CT 
to understand the nature itself. 

The Essence of 
Computational Thinking
Our brain’s inclination to store, re-
trieve, and process information in an 
associative/distributive fashion may be 
a manifestation of a duality engrained 
in the fabric of matter and informa-
tion. This inclination may just be an 
evolutionary response, shaped up over 
many years, to optimize the handling 
of sensory information whose quanti-
fiable nature only resonates with dis-
tributive and associative operations. A 
similar evolution can be seen in elec-
tronic computing’s structural change 
from a centralized hardware of the past 
to today’s distributed network due to 
the growing need for faster processing 
and more storage to solve problems 
and improve our survival. As Montague 
suggests,19 our changing need for sim-
plicity and generalization (via associa-
tive processing) as well as complexity 
and details (via distributive process-
ing) of information has driven us to 
think harder and become smarter. At 
the same time, while our brain struc-
ture and cognitive processing offer all 
of us a chance for full utilization of an 
optimized response to a changing en-
vironment, the efficiency, intactness, 
and effortfulness with which we all use 
it depends on the individual.

At the core of our CT framework in 
Figure 4 lies a dichotomy both in the 
quantifiable nature of sensory infor-

through observations, experiments, 
and mathematics in the 16th century,18 
philosophers debated for two more 
centuries whether a scientist’s subjec-
tive view of the world can be consid-
ered as true knowledge. 

One of the debated views (empiri-
cism) argued that the mind is a blank 
slate and that it acquires knowledge 
through perception and inductive rea-
soning, which involves putting percep-
tions, experiences and related pieces 
of information in a synthetic (associa-
tive) way to arrive at generalizations 
and conclusions as depicted by the 
bottom-up flow (arrows) of informa-
tion in Figure 1. Knowledge acquired 
this way is not warranted because new 
experiences may later change its valid-
ity. The other view (rationalism) argued 
that knowledge is initially acquired 
through innate concepts which then 
serve as the source of additional knowl-
edge derived from them in a rational 
(analytic) way using deductive reason-
ing. In deductive reasoning, a concept 
generally applies to all members and 
situations that fall under its representa-
tion, as depicted by the top-down flow 
(arrows) of information in Figure 1. 
Since innate concepts were considered 
true, knowledge derived from them 
was considered to be warranted, not 
needing further examination. 

By arguing against both views, Im-
manuel Kant created a bridge to lay 
the foundations of epistemology and 
today’s scientific methodology of in-
quiry.15 He recognized what experience 
brings to mind as well as what mind it-
self brings to experience through struc-
tural representations. He considered 
that knowledge developed a poste-
riori through synthesis could become 
knowledge a priori later. And, a priori 
cognition of the scientist continues 
to evolve over the course of science’s 
progress. Although the deductive and 
inductive cycle of scientific progress has 
historically been slow until recently,18 
the growing knowledge and the num-
ber of researchers tackling a problem 
have all now shortened the timescale 
of progress. Concepts and theories 
once considered true and valid are now 
quickly being changed or eliminated. 

Modeling: A Universal Process
Modeling and testing has been an im-
portant tool for scientific research for 

hundreds of years. In principle, it works 
exactly as articulated by Kant, and as il-
lustrated in Figure 1. Scientists ideally 
start with a model of reality based on 
current research, facts, and informa-
tion. They test the model’s predictions 
against experiment. If results do not 
match, they then break down the model 
deductively into its parts (sub models) 
to identify what needs to be tweaked. 
They retest the revised model through 
what-if scenarios by changing relevant 
parameters and characteristics of the 
sub models. By putting together induc-
tively new findings and relationships 
among sub models, the initial model 
gets revised. This cycle of modeling, 
testing, what-if scenarios, synthesis, 
decision-making, and re-modeling is 
repeated while resources permit until 
there is confidence in the revised mod-
el’s validity. Electronic computers have 
recently accelerated this cycle because 
not only do they speed up the model 
building and testing via simulations 
but they also help conduct studies that 
are impossible experimentally due to 
size, access, and cost.

Modeling and simulation (M&S) ap-
pears to be a device-independent pro-
cess of information that links comput-
ing and cognition. Its associative and 
distributive processes even describe 
computable actions of other quantifi-
able things besides information. For 
example, formation of physical objects 
or particles from smaller ones resem-
bles the act of modeling because both 
seem to involve packing parts together 
associatively to form a whole. Further-
more, such act of modeling is often 
driven by external forces or by a collec-
tive “trial and error” process controlla-
ble by conditions and rules of engage-
ment—much like a simulation.30

Concepts and theories  
once considered  
true and valid  
are now quickly  
being changed  
or eliminated.
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and utilizing them fully and equally. In 
that sense, everyone, not just computer 
scientists, uses CT. But, since abstrac-
tion and decomposition skills are heav-
ily used in programming and problem 
solving,2 having students improve them 
has been a concern of educators. For 
example, abstraction is used to distrib-
ute the complexity of a code vertically, 
as shown in Figure 1, into seemingly 
independent layers and protocols in 
such a way to hide the details of how 
each layer does the requested service. 
Dijkstra, a pioneer in programming, 
regarded abstraction as the most vital 
activity of a competent programmer. 
In fact, a good programmer is expected 
to be able to oscillate between various 
levels of abstraction.2 While being able 
to divorce one’s thinking from low-
level details and biases is key to find-
ing solutions that can be transformed 
to different applications, most CS un-
dergraduate students barely move be-
yond language and algorithm-specific 
details and biases. Similarly, decompo-

mation and in the way information 
storage, retrieval, and processing is 
done by the brain hardware. Since cog-
nitive researchers have demonstrated 
how information processing could 
lead to cognitive inferences via induc-
tive reasoning,7,25-26 here we are not 
concerned about details of how infor-
mation processing generates cognition 
but rather how duality in fundamental 
computation may lead to duality in 
higher-level reasoning. The invariant 
nature of information affects not only 
how similarly computing is done at the 
most fundamental level (that is, ad-
dition and subtraction at the core of 
our framework), but how this similar-
ity would carry itself all the way to the 
high-level processing at the outer lay-
ers in Figure 4. Despite these similari-
ties, however, high-level processing of 
information with different devices may 
still have device-dependent aspects, 
therefore requiring different skills to 
use each. Basically, the duality in infor-
mation processing and its cyclical and 
iterative use, as in Figure 1, is the very 
essence of computational thinking that 
we all employ for learning, conceptual 
change, and problem solving. Anyone 
who wants to use electronic devices to 
further facilitate this process might 
need electronic CT skills on top of bio-
logical CT skills, as shown in the last 
layer of Figure 4. 

Our framework’s relation to habits 
of mind in other fields, such as ST and 
ET, has been reviewed favorably by rel-
evant communities.31 In fact, ST’s in-
ductive and deductive processes are no 
different than those used in everyday 
thinking by non-scientists.7,26 We all 
use inductive reasoning to filter out de-
tails and place our focus on more gen-
eral patterns, thereby assigning priority 
and importance to the newly acquired 
information. Deductive reasoning, on 
the other hand, helps us make deci-
sions and draw conclusions from gen-
eral concepts. Yet, using these CT skills 
in an iterative and cyclical fashion for 
inquiry and conceptual change varies 
for everyone, depending on the under-
lying brain structure and the quality 
and quantity of the environmental in-
put it receives. A scientist is a good ex-
ample of someone who does this in a 
frequent, consistent, and methodologi-
cal way, leading eventually to a habit of 
mind that is often known as ST.

The two currently cited electronic 
CT skills that resonate with cognitive 
functions of a computational mind, as 
we defined here, are abstraction and de-
composition. The rest can be considered 
as device-dependent skills that may or 
may not have any cognitive benefits 
other than being a routine or specific 
use of an electronic device. Abstraction 
is an inductive process that helps our 
cognition in important ways, especially 
at its developmental stages, by simpli-
fying, categorizing, and registering key 
information for quicker retrieval and 
processing. Decomposition, on the 
other hand, is a deductive process that 
also helps us in many ways, including 
dealing with a complicated situation 
by distributing the complexity into 
smaller and simpler pieces in order to 
attack each one separately until a cu-
mulative solution is found. 

We all use abstraction and decom-
position skills in our daily lives,3 but 
not everyone is equally aware of their 
importance, nor are we all practicing 

Figure 4. A cognitive framework on the essence of electronic CT skillset in terms of 
biological CT skills.31

+ –
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gain experience and fun creating ar-
tifacts (for example, models or video-
games) with M&S, could this help them 
develop an interest to look for math-
ematical, computational and scien-
tific principles under its hood? Some 
afterschool studies report encourag-
ing results in teaching students textual 
programming in the process of creat-
ing videogames that connect to K–12 
math and science learning outcomes.22 
A quasi-experimental study of ours re-
ports32,33 similar preliminary findings, 
as briefly explained next. 

Annually, 50 teachers taught math 
and science topics using M&S tools 
during formal instruction. Teams of 
four students selected by each teach-
er received additional afterschool 
instruction from college faculty on 
mathematical principles of modeling 
(that is, new = old + change) as well as 
basic programming (in Excel and Py-
thon) to construct hands-on simula-
tions. A panel of experts scored team 
projects and coded narratives to find 
common themes.5 According to these, 
hands-on modeling helped students 
realize the virtue of decomposition 
in problem solving, because finer 
decomposition led to more accurate 
answers. Other emerging themes in-
cluded observations that textual pro-
gramming provided better control of 
the decomposition (and desired accu-
racy) as well as easier coding (for exam-
ple, via a simple loop). Finally, since 
computation of change in position, 
velocity, and acceleration necessitated 
a scientific formula to compute acting 
forces, this appeared to help students 
link computing and natural sciences. 
According to student interviews, it 
motivated them to plan on taking sci-
ence and computing courses in later 
years. Follow-on quantitative data 
supported these anecdotal findings.33 
For example, while no physics courses 
were offered before in any of the 13 
high schools of the urban school dis-
trict, they became part of curricular of-
ferings in two of them. The number of 
students taking general physics in the 
suburban high school increased by 
50%. Also, the afterschool program led 
to design of a new computing course 
in one of the urban high schools, 
drawing high enrollment for three 
years until the teacher took a lucrative 
job in industry. 

sition is used in software engineering 
as well as in parallel computing to dis-
tribute the workload horizontally, as in 
Figure 1, among multiple processors. 
Unfortunately, automatic compilers 
are not here yet to help us write paral-
lel codes, and teaching students paral-
lel programming is still a challenge. 
There are no quick fixes but as men-
tioned in the next section M&S tools 
have been found to boost not only 
students’ cognitive functions but also 
their motivation to learn program-
ming and science content. 

Measuring the Impact 
of CT Education
There are instruments with good psy-
chometric properties to measure the 
impact of technological pedagogical 
content development17 tools on teach-
ing and learning. M&S’s interdisciplin-
ary and changing technological nature 
require customization of its use in 
instruction and the assessment of its 
effectiveness in teaching of the con-
tent under consideration. Researchers 
may need to use not only quantitative 
methods to measure variables involved 
but also qualitative methods to initial-
ly identify those variables and to later 
understand and triangulate them for 
validity. The quantitative sources of 
data often include surveys to gather 
pre/post activity data, unit test scores, 
course passing rates, report cards, 
graduation rates, and achievement 
scores in standardized tests, while 
qualitative sources of data may be in-
terviews, classroom observations, and 
computational artifacts.5 

Education researchers have iden-
tified M&S as an exemplar of inquiry 
guided learning.21,23 These findings are 
also grounded in learning theories that 
recognize the role of abstract thinking 
and reflection in constructing knowl-
edge and developing ideas and skills.3 
However, because constructivist and 
unguided learning works only when 
learners have sufficiently high prior 
content knowledge to provide “inter-
nal” guidance,16 use of M&S in K–12 
education has been slow. Technologi-
cal changes in the past decade have 
given birth to new M&S tools that can 
shield the learner from high-level con-
tent knowledge in math (for example, 
differential equations), computing 
(such as programming), and science 

(for example, laws of nature), thereby 
making them accessible to novices for 
constructive learning. 

As noted in peer-reviewed arti-
cles,32,33 empirical data collected from 
hundreds of teachers and their stu-
dents in 15 secondary schools for a 
period of seven years revealed statis-
tically significant results to suggest 
that M&S inherently carries a mix of 
deductive and inductive pedagogies 
in the same setting. This is great news 
for educators who want to take advan-
tage of both approaches of teaching. 
Basically, modeling provides a general 
simplistic framework from which in-
structors can deductively introduce a 
topic without details, and then move 
deeper gradually with more content 
after students gain a level of interest 
to help them endure the hardships of 
effortful and constructive learning. 
Simulation, on the other hand, pro-
vides a dynamic medium to test the 
model’s predictions, break it into its 
constitutive parts to run various what-
if scenarios, make changes to them if 
necessary, and put pieces of the puzzle 
together inductively to come up with a 
revised model. This kind of iterative 
and stepwise progression is consis-
tent with psychology of optimal learn-
ing which suggests balancing skills 
and challenges.3 Anyone who learns 
in this iterative cycle of inductive and 
deductive reasoning would, in fact, be 
practicing the craft of scientists. 

Measuring the impact of M&S on 
generating awareness of and appre-
ciation for abstraction and decomposi-
tion skills, particularly in their relation 
to programming, needs further study. 
A question would be: Once learners 
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33. Yaşar, O., Maliekal, J., Veronesi, P., and Little, L. 
An interdisciplinary approach to professional 
development of math, science and technology 
teachers. Comp. in Math & Sci. Teaching 33, 3 (Mar. 
2014), 349–374.
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Conclusion
An interdisciplinary perspective on 
the cognitive essence of CT has been 
presented here based on the distribu-
tive and associative characteristics 
of information storage, retrieval, and 
processing by a network of neurons 
whose communication for searching, 
sorting, and analogies is driven by 
neural connectivity, richness of cues, 
a trade-off between simplification and 
elaboration, and a natural tendency 
to minimize energy usage. This broad 
approach might help clear some of the 
trouble spots with CT while putting it 
on a higher pedestal through a link to 
cognitive competencies involved in sci-
ence and engineering. 

Everyone cognitively benefits from 
CT by the virtue of having a computa-
tional mind. All we need is to help them 
use it in a more systematic way in their 
lives and professions. Since M&S facili-
tates an iterative and cyclical process of 
deductive and inductive reasoning, it 
could be used to teach novices not only 
critical CT skills (for example, abstrac-
tion and decomposition) but also ST 
and ET skills, including formation and 
change of hypothesis, concepts, de-
signs, and models. While these are no 
different than cognitive processes of 
ordinary thinking,26 not everyone uses 
them as consistently, frequently, and 
methodologically as computer scien-
tists, natural scientists and engineers. 
The good news is they can be improved 
later through training and education.

CT’s universal value is far beyond 
its relation to cognition. I argue that 
all heterogeneous stuff behaves com-
putationally, regardless of what drives 
it. And, iterative and cyclical form of 
such behavior appears to be the es-
sence of natural dynamism of all dis-
crete forms. M&S is such a pattern, and 
putting computation in this fashion at 
the heart of natural sciences provides 
an opportunity to claim that computer 
science deals with natural phenom-
ena, not artificial (digital). The compu-
tational revolution started by Turing 
may eventually be how our knowledge 
can come together to make more sense 
of our world. 

One of the calls for action here 
for the CS community is to put more 
emphasis on M&S as a crucial part 
of student practice and education. 
This may help pave the way to teach 

computing principles to non-CS stu-
dents.12 Furthermore, while educa-
tional researchers have done a good 
job of measuring the impact of M&S 
on learning, a focus by the CS commu-
nity can help generate interest among 
educational researchers to do similar 
research by measuring M&S’s impact 
on conceptual change, abstraction, 
decomposition, and metacognitive 
skills, particularly in relation to CT 
and programming education. The 
second call is that prior to teaching 
students electronic CT skills, we need 
to teach them a habit of conceptual 
change through iterative and cyclical 
practices of inductive and deductive 
reasoning. Besides M&S tools, re-
searchers should explore other modu-
lar and scalable design toys as well as 
reading and writing practices to offer 
similar CT practices. 
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