MSP-Motivation Assessment Program (MSP-MAP)

Tools for the Evaluation of Motivation-Related Outcomes of Math and Science Instruction

Martin Maehr (mlmaehr@umich.edu), Principal Investigator
Stuart Karabenick (skarabeni@umich.edu), Project Director
Combined Program in Education & Psychology
University of Michigan

www.mspmap.org
MSP-MAP Goals

- Develop and make available reliable, valid, and practical tools to assess a variety of motivation-related student outcomes in math and science
- Increase MSP and teacher understanding of how motivation-related outcomes contribute to student achievement in math and science
- Assist teachers and MSPs by providing information about how these outcomes may vary depending on students’ gender, age, ethnicity, or economic circumstances
Outline

- General approach to motivation
- What are “motivation-related” student outcomes?
- Why are they important?
- What is their connection to math and science and MSPs?
- MSP-MAP
 - Timeline
 - Advisory structure
 - Possible future directions
General Motivational Framework

Motivation-Related Outcomes
- Motivational Beliefs and Affect
- Self-Regulation
- Epistemological Beliefs

Choice & Persistence
- Intensity
- Quality

Achievement
Why Motivation-Related Student Outcomes?

- Motivation-related beliefs and strategies can influence learning and achievement
- Changes in motivation-related outcomes can precede changes in student achievement
- Motivation-related outcomes can affect students’ persistence and pursuit of careers in math and science
- The effectiveness of instructional interventions may not be fully recognized when motivation-related outcomes are not assessed
Motivation-Related Outcomes

- Motivational Beliefs and Affect
- Self-Regulation
- Epistemological Beliefs
Motivational Beliefs and Affect

- Competence-Related Beliefs
- Task Value Beliefs
- Interest
- Achievement Goals
- Positive & Negative Affect
Competence-Related Beliefs

- Students’ judgments about their ability and confidence to perform adequately
 - in school
 - in math and science
 - on specific math and science tasks
- Consistently found to positively predict learning and performance outcomes even after controlling for prior knowledge
Task Value Beliefs

- Includes students’ beliefs about the *utility* and overall *importance* of math and science as an area of study
- Shown to positively predict future course enrollment, pursuit of math and science-related careers
Interest

- An individual's attraction to, liking for, and enjoyment of a specific activity or domain (e.g., math & science)
- Related to deeper cognitive engagement, self-regulation, achievement, and career choice
Achievement Goals

- Represent individuals’ purposes when approaching, engaging in, and responding to math and science instruction

 - **Mastery goals**
 - Focus on learning and understanding
 - Positively related to use of deeper cognitive strategies, higher levels of interest

 - **Performance goals**
 - Focus on outperforming others
 - Generally less adaptive, can result in poor study strategies, self-handicapping, defensive attributions
Positive and Negative Affect

- **Positive affect**
 - E.g., happy, calm, excited, joyful
- **Negative affect**
 - E.g., anxiety, fear, hopelessness, sad, tired
Self-Regulation

- Self-regulating students
 - Reflect on their own thinking
 - Make goals and plans for their learning
 - Monitor their progress towards goals
 - Adjust or regulate their thinking and learning

- Includes
 - Cognitive and metacognitive strategies
 - Strategies for regulating motivation
 - Strategies for regulating behavior/context
Epistemological Beliefs

- Core beliefs about the nature of knowledge and the process of knowing
 - Simple vs. complex
 - Stable vs. changing
 - Justification of beliefs
 - Authority

- Nature of Math and Science

- Related student beliefs about learning and teaching (e.g., Is learning quick and easy?)
MSP-MAP
Research Methodology

○ Appropriate survey and sampling techniques
○ Scaling techniques (e.g., Rasch modeling, exploratory and confirmatory factor analyses)
○ Multivariate correlational designs and analyses
○ Structural Equation Modeling (SEM)
○ Hierarchical Linear Modeling (HLM) where appropriate
Year 1

○ Instrumentation
 ● Review and analyze existing instruments
 ● Adapt existing instruments to the needs of MSPs
 ● Create new instruments as needed

○ Establish partnerships with MSP sites
○ Join and interact with the MSP network
○ Build infrastructure and capacity for Year 2 data collection and Year 3 dissemination
Year 2

- Test and validate measures with a large sample of students across three general age/grade ranges: upper elementary (grades 3-5), middle school (grades 6-8), and high school (grades 9-12).
- Collaborate with MSP sites and their evaluation programs
- Archive data
Year 3

- Disseminate the toolkit of instruments and scales to MSPs
- Work with MSPs to create customized hardcopy scannable forms they can duplicate, administer, and return to MSP-MAP for processing, scoring, and feedback
- Host online web versions of surveys
MSP Capacity Building

- Improved tools for the assessment of motivation-related beliefs capable of national (and international) dissemination
- Personnel capable of providing technical assistance with motivation in mathematics and science
- Technological systems for efficient processing and dissemination
- Data archiving
Local Advisory Personnel

○ Mathematics
 • Ed Silver - University of Michigan
 • Joanne Caniglia - Eastern Michigan University

○ Science
 • Elizabeth Davis - University of Michigan
 • Brian Coppola - University of Michigan
Possible Future Directions

- Improved measures of instructional contexts
 - Simple classroom observation systems
 - Student perceptions of the learning environment
- Teachers’ beliefs about teaching, learning, and student motivation
- Student identity (e.g., as mathematician or scientist)
MSP-MAP

Combined Program in Education and Psychology

University of Michigan

Contact Information
Martin Maehr: mlmaehr@umich.edu
Stuart Karabenick: skarabeni@umich.edu

www.mspmap.org